
MPI and Embedded TCP/IP Gigabit Ethernet Cluster Computing

Neal Bierbaum

Sandia National Labs
nrbierb@sandia.gov

Abstract
A group of lower cost PCs connected via Gigabit
Ethernet and using MPI for communications
between multiple parallel processesrunning
simultaneouslyon all hosts provides a cost
effectiveandpowerfulcomputingsolution. The
processingloadfor interprocesscommunications
via TCP is significant when the parallel
processesmustexchangea largeamountof data.
TCP communicationsat nearwire speed(above
800 Mbit/sec) use almost the entire processing
capacityof a 1 GHz Pentium3 processorwith a
standard network interface card (NIC),
effectively reducing the performance of an
economicaltwo processorhost by almosthalf.
This study evaluatesthe performanceand cost
effectivenessof using a NIC with embedded
TCP/IP processing to offload the network
processingand allow more MPI processesper
host.

Introduction
Mid-size clusters (10-100) of computers
connectedby high speedLANs provide a cost
effective resource for many large problems.
These generally use Linux as the operating
systemand MPI to integrateparallel processes
on multiple hosts. A switchedGigabit Ethernet
(1000BT)LAN connectingall hostsin a cluster
provides high bandwidth interconnectivity
betweenprocessesthat needto exchangelarge
amounts of data. In this environment the
TCP/IP network protocol processingconsumes
an importantamountof thecomputingresources
of each node. Network interface cards that
perform the protocol processingon the card
offer thepossibilityof reducingthissignificantly
so that the host's processingcapacity may be
appliedto the computationaltasks. How large
can the gainsbe with this approach?Do these
much more expensive cards (now $795
comparedwith standard64-bit wide PCI gigabit
cards at $75 for 1000BaseT) justify their
premium price?

Design of Study
How might a NIC with embeddedTCP/IP
protocol processing(hereafterreferredto as an
"embeddedNIC") improve the performanceof
the hosts within a computing cluster? Most
importantly, it could eliminatethe time that the
host spends in the kernel processing each
incoming packetand switching betweenkernel
and user mode. It might also reducememory
loadby directly movingthedatato andfrom the
user memory space to the interface without
intervening copies. Finally, it might more
quickly processthe packetsto decreaselatency
and increase the data transfer rate to the
maximum allowed by the links' Gigabit data
rate. Thesebenefitsmay allow eachhostto run
anotherMPI processto either improve overall
performanceor allow equivalent performance
with fewer hosts. It is this secondoption of
reducingthe numberof hoststhat will be used
for the cost comparison.

The first portion of the study focused upon
measuringthe processingload and performance
of a systemwith standardNICs to determinethe
theoretical gains possible. The actual
communications load of computational
processesusing MPI varies widely depending
upontheamountof datathatmustbeexchanged.
Synthetictestswhich maximizednetwork load
wereusedto determineworst-caseloading. This
providesanupperboundon thegainsthatmight
beobtainedwith anembeddedNIC. Thesetests
showedthat TCP/IPprotocolprocessingat near
line-rate generateda load almost equivalentto
thecapacityof oneof the two 1GHz Pentium3
processorsin the test host. This heavy load
shows that the gain from using an embedded
NIC could be very significant.

Thesecondportion of the studyusedembedded
NICs from Alacritech to directly compare
loading,datarate,andlatencywith thereference
systems. Thesecards are still in beta stage
development. They showed multiple
inconsistenciesand problems that might be

expectedfor a newtechnology. Theseproblems
have limited some tests and reduced some
performancemeasurements.Yet some of the
resultsshoweda promisethat hasmadefurther
testing and analysis worthwhile.

Cost Analysis
The embedded1000BaseTNIC used in our
studycost~$725morethana standardNIC. To
be economicallyjustifiable the embeddedNIC
must provide performanceimprovementsthat
allow a reduction in the numberof hostsand
network switch ports that at least offset this
additionalcostper host. Dual processorservers
with fastCPUs(2+ GHz P4)andlargeramounts
of memory (1+GB) are $3.5-4K per host with
interfacecard. Wire interfacesandswitchesare
far cheaper than the fiber optic versions; a
smallerwire interface(24-48ports) switch may
cost$200perport, a largeswitchstill more. A
first order comparisonwith the lowest per host
costsshowsthatperhostcostsare$4500with an
embeddedNIC vs. $3700without,a ratioof 1.22
to 1. This implies that hostswith the embedded
NIC must provide a 22% improvement in
performanceto allow the numberof hoststo be
cut to an equivalent total cost for constant
performance. Can this be realized?

Test Design
Several different forms of tests were used.
CustomC++ classesweredevelopedto support
processload measurement,timing distribution
and statistical analysis, and TCP connections
with specialtiming, buffer, andoptionscontrol.
Those tests which used MPI were performed
with MPICH, v.1.2.2,themostwidely usedopen
source MPI implementation, and MPIpro, a
commercial MPI implementation that uses
multiple threadsand blocking IO. Five hosts
were connected via a nonblocking gigabit
Ethernet switch. Each host containedtwo 1
GHzPentium3 processorsanda64 bit widePCI
interface slot with a 3Com "Alteon" Ethernet
NIC. Each host used the Linux 2.4.16 kernel.

The first seriesof tests used the netperf TCP
performancetest softwareto determineif these
systemscould support line rate data transfer
underoptimizedconditionsandto determinethe
processorload the transfersengendered.Packet
size,networkbuffer size,andmessagesizewere
varied.

The secondseries of tests used the standard
MPICH test program mpptest that combinesa
synthetic computational load with message
passing in a synchronized loop. This was
modified to support individual threads for
computationandmessagepassing,detailedloop
timing measurements,and accuratesystemload
measurement.

Thethird seriesof testsuseda customprogram,
latencyTest, to measurelatencyandsystemload
for messagepassingwith a simultaneoustwo
way synchronized exchange,ping-pong, and
one-way scenarios with blocking and
nonblocking MPI and direct TCP socket
communications with a variety of options
including direct and user copy sendswith the
optimizedTCP sendfile function. The directly
controlledTCP communicationsallowedtesting
options and methods of transfer not directly
realizedin the currentMPI softwarebut which
might yield improved performance with the
embedded NIC.

First Phase Base Results
Analysis of the testing during the first phase
indicated several important results:

1. More than the full processingpowerof a 1
GHz PentiumIII canbeconsumedwith just
a pair of TCP connectionsperformingsend
and receive at maximum rate over the
Alteon Gigabit interface. In one test using
netperf with two receivesand one transmit
running simultaneously (equivalent to
multiple instancesof an MPI processwith
major dataexchangerunning on the host),
the two processor system had both
processorsrunningat 93% total load -- this
simplenetworkactionconsumed186%of a
single processor'scapacity! All of this is
system load (kernel processing);most is
TCP/IP and buffer copying. Receiving a
transferusesabout twice the processingof
sending. Maximumratemessagerelaywith
largemessagesgenerallyusedat least60%
to 80% of a single CPU. This showsthat
removingthe protocolprocessingload from
the hostsCPUs has the potential to free a
large amount of computing resource for
direct computational work.

2. Themaximumpacketsizeasdeterminedby
thegigabitethernetinterface'sMTU andthe
buffer sizefor the TCP receivebuffer were
the most critical factorsfor performancein
all tests of data transfer rates. The key

lessons from these tests were two: The
MTU for the Gigabit ethernetcard should
be set to "jumbo frame" sizeof 9000bytes
if possible.The default buffer size for MPI
communicationsshould be changedfrom
16K to 64K bytes. For MPICH this requires
a slight modification of code; MPIpro
requiresspecific runtimearguments.These
two simple changesalmost quadruple the
performanceof larger size data transfers
betweenMPI processes.But if buffer sizes
cannot be increased,use a smaller MTU
(2100 bytes is about optimum for 16K
buffers.

3. If a second processor or embedded
processingis available, the program will
benefit greatly from simply separatingthe
MPI datatransferandthelocal computation
into unique threads. The speed-upwill
dependupon the ratio of computationto
communication,butcanbenearlytwofold if
both are matched. MPICH is not thread safe
so all MPI actions must be performed within
a single thread with the explicitly
programmeduseof mutexesand condition
variables to control synchronization
betweentheMPI communicationthreadand
otherthreads. Theprocessingloadcreated
by theMPI datatransferscanbereducedby
splitting the MPI communicationsinto still
further threads and using more efficient
blocking sendsand receives. MPIpro is
fully multithreaded and uses multiple
threads for MPI communicationswithout
any further usercodein the programusing
MPI.

4. Some MPI transactionsinvolve exchanges
of only very small amounts of data,
especiallywhen they are used for process
synchronization.The end-to-endlatencyis
critical for such actions,especiallyif they
involve a large number of processors.
Latency, the time between one process
sendingthe packetandanotherreceivingit,
is dominatedby factorsother than network
data rate. In fact, the latency for small
packet sizes either by MPI or just with
TCP/IP socketswas almost identical with
100MBit and 1Gbit LANs.

Second Phase Preliminary
Results
TheNICs in two of thetesthostswerereplaced
by the Alacritech1000BaseTcard with on-card

hardware and firmware support for TCP/IP
protocol processing. The Linux 2.4.16 kernel
was modified with a small set of patchesto
support the Alacritech driver's bypass of the
kernel's TCP/IP stack for certain network
operations. This allows all softwareto be run
with varying degreesof offload by the interface
cardwith no changein programcode. Themost
efficient offload is performedduring blocking
sendsandreceiveswith the receivebuffer space
preassigned.MPI_Isend and MPI_Ireceive are,
in general,theoptimumMPI commandsfor data
transferbecausethey do not immediatelyblock
thecalling process.TheMPIpro implementation
of thesecommandsusesthreadsand blocking
IO. This allowstheAlacritechcardto morefully
processTCP/IP streamsonboardthe card and
results in the largest gain. MPICH uses
nonblockingIO; the gainsarenot assignificant
because the kernel must still do some work.

The Alacritech NICs are not yet commercially
releasedfor Linux andthe preliminarystatusof
the Linux versionof software/firmwareshowed
up repeatedlywith inconsistenciesin operation
and fairly commonfull systemcrashesby the
Linux kernelduring heavytesting. As is, these
NICs cannot be used in any production
environment.But the performancein sometests
showsthat theymaywell beeffectiveoffloading
muchof thenetworkprocessingload. Currently
the cardsdo not supportjumbo framesbut only
the standard1500 byte MTU which somewhat
reducestheir maximumsinglestreamdatarate--
especially if they are communicatingwith a
standard NIC. Latency tests with small
message sizes show per packet latency
reasonablysimilar to that seenwith the standard
NICs.

Analysis and Results
Thepotentialgain canbe shownby comparison
of simultaneoustwo way messagepassingwith
MPIpro between pairs of hosts using the
standardNICs and the embeddedNICs. 2500
130KB messages were sent each way
simultaneouslywith synchrony between each
transferwith nearly equivalenttotal time. 81%
of the total processortime was unusedon the
hosts with embeddedNICs vs. 66% for the
standardNICs, a ratio of 1.34 to 1. Other tests
did not show such gains.

Conclusions
The beta level Alacritech cards are not yet ready
for Linux in other than test environments. Yet
our initial results show that these or similar cards
that may be released by other manufacturers in
the near future will be economically justifiable

even at their current prices once perfected.
Anyone planning a moderately sized cluster,
especially one which will use MPIpro with
Gigabit Ethernet should evaluate a NIC with
embedded TCP/IP.

