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Experimental Definitions
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Corner Crack 
Specimen Geometry

Titanium MMC Material,
16 ply = 2.1 mm thickness

Matrix:  TIMETAL®21S
(b-21S)

Fibers:  SM1240
Unidirectional, 100mm dia.
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Mechanical Loading System
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Control and Measured Temperature Waveform

Measured and Predicted Temperature Profile
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Sequence of Measurements Taken
During a Current Reversal
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Electrical Potential Before and After
Thermal Correction

Electrical Potential Change 
During Thermal Cycle

Electrical Potential Correction for Changes
During Thermal Cycling (Non-Isothermal Tests)
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Applied Loading and Predicted Constituent
Axial Stresses for Test 133-5-1 (In-Phase TMF)
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SpecimenTest TypeTmax(ºC)Tmin(ºC)
D

T(ºC)Tmean(ºC)
s

max(MPa)
s

min(MPa)CyclePeriod (s)AppliedCycles133-2Isothermal371482538371482538000371482538462389437-416-478-4034124124122048508480133-3Isothermal4274270427484-4854122046133-4Isothermal5385380538433-4254123549133-5TMF538204334371474-4811672536133-6TMF538371167454498-49910321076133-7TMF454288166371468-47610321507133-9TMF454288166371445-4572652602133-10TMF538371167454383-42910321002133-11Isothermal4274270427541-5561984880133-12Isothermal4274270427481-4892332588

Test Matrix

•10 Specimens:  5 Isothermal Fatigue, 5 Thermomechanical Fatigue

•Loading in bending, so top and bottom surfaces were subjected to equal but opposite stresses
during cycling.  Resulting in two fatigue crack growth experiments with different loading
conditions simultaneously on each specimen = 20 experiments.

•The effect of hold times in tension and compression and wave shapes  on crack growth rates
were also studied.
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Fracture Mechanics Approximation of
Fiber Bridging
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[19]  Ghonem and Zheng, 1993

Matrix Fatigue Crack
Growth Curves

Comparison of 538C Isothermal Crack Growth 
Results with Matrix Fatigue Crack Growth Data

•Composite at 538C exhibits a significant
reduction in crack growth rate from the matrix
material, equivalent rates to matrix at 23C.

•For the same DKapp, the crack growth rate in the
matrix would be about an order of magnitude
higher than in the matrix (fiber bridging + stiffness
effect reduce crack growth rates).

•Crack growth rates correlate well with predicted
DKm, notice that DK shifts towards 650C matrix
curve after correcting for fiber bridging and
modulus.
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[19]  Ghonem and Zheng, 1993

Comparison of Thermomechanical Fatigue Crack 
Growth Results with Matrix Fatigue Crack Growth Data

• In-Phase Tests end with -1, out-of-phase tests
end with -2.

•For all TMF tests, composite showed a reduction
in crack growth rate over the matrix material.

•Out-of-phase TMF tests have a higher DK than
their counterpart in-phase TMF tests due to their
larger effective applied stress range.

•Calculated DKapp gives a correlation between in-
phase and out-of-phase data:  higher DK is
calculated for out-of-phase tests which always
have a higher crack growth rate than in-phase
tests.

•Crack growth rate increases with applied stress
range (133-6-1 vs. 133-10-1), 20% increase in
applied stress range results in over an order of
magnitude increase in crack growth rate.

•Crack growth rates increase with temperature
range and mean temperature.
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Individual Cycle Results

•Actual physical increases in crack dimensions can only be accurately measured at maximum load.

•Changes in the predicted crack dimensions during individual loading cycles represent the opening
and closing of the crack rather than a physical change in the crack dimension.

133-2  Crack 1
Isothermal    371C, 482C,  538C
30 s Hold in Tension
30 s Hold in Compression

•371C:  No crack growth over 2045 cycles

•482C:  Immediate change in cycle response,
crack closing during compressive hold time.
Response loop slowly became smaller until it
closed after 500 cycles.

•538C:  Immediate change with development of
large loop.  Response loop slowly closes over
next 500 cycles.

•Higher temperature allows crack to open and
close:  reduction in compressive stress in fibers
that hold crack closed.

•Crack depth is more sensitive due to geometry.
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Individual Cycle Results:  
In-Phase vs. Out-of-Phase

Out-of-Phase TMF    288C - 454C
180 s Hold in Tension
1800 s Hold in Compression

In-of-Phase TMF    288C - 454C
1800 s Hold in Tension
180 s Hold in Compression

133-9  Crack 1

133-9  Crack 2

•Small changes in crack depth for in-phase cycling, some crack
opening during 1800s hold time in tension.

•Large changes in crack depth for out-of-phase cycling, crack
closure during 1800s hold time in compression.

Upward shift of Cycle
Loops corresponds with
crack growth over cycles.
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Conclusions

• A fully automated TMF test system capable of extremely sensitive crack
growth measurements was developed.

• Thermomechanical fatigue crack growth rates correlate with the effective
stress intensity factor

• Crack growth rates increase with temperature

• Higher crack growth rates are observed in out-of-phase TMF tests than in-
phase TMF tests

• Isothermal tests have crack growth rates higher than in-phase TMF tests but
lower than out-of-phase TMF tests

• Hold time effects are complex

– hold times in compression increase the crack growth rate more than hold
times in tension

– hold times are the most significant factor affecting the opening and
closing of cracks during cycling

• Loading wave shape effects are apparent in the crack-strain hysteresis loops

• Crack opening/closing behavior is complex and changes with cycles
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