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ABsTRACT: This article examines the quality assessment of planar quadrilat-
eral mesh elements in a comprehensive way. First, an analytic characterization
of quadrangular shape is provided, and existing concepts of stretching and
skewness, earlier proposed by for specific geometries, are generalized. Then,
two triangle quality measures are extended to quadrilaterals and their respec-
tive extremal and asymptotic behaviors examined, showing in particular that
they cannot detect, if needed, triangular degeneracy of a quadrilateral. An
existing quality measure is then discussed, which is able to handle this case.
In particular, an unbalanced asymptotic behavior is demonstrated, justifying
the need for a new approach. Toward this goal, the triangle quality measure
based on FROBENIUS norm is modified in order to replace equilateral reference
element by right isosceles triangles, with control on the specific right angle.
Finally, two new quadrilateral quality measures are designed and examined
using these results. Numerical results illustrate the matter.
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Introduction

It is now widely known that the geometric properties of the mesh supporting a
finite element or finite volume computation directly impact the accuracy of the
numerical result. For example, in the particular case of finite element analysis of
elliptic problems, [3] shows that accuracy of the approximate solution is directly
related to a geometric estimate of mesh elements, generally referred to as aspect
ratio, in the case where these elements are simplicial.

Although triangular and tetrahedral quality measures have been extensively
discussed, in particular in [1, 2, 5, 6, 8, 10, 11], little work has been done
concerning planar quadrilaterals. For such elements, [12] proposes estimating
the quality by means of the aspect ratio, the skewness and the stretching factor.
Although natural for some particular geometries, such measures are not well
defined in a general context. Alternate quality estimates have been introduced
by [7], but without providing comparisons.

After recalling a few useful geometrical results, this article firstly discusses the
analytical characterization of planar quadrilaterals. In particular, asymptotic
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degeneracy cases are examined. The modification of triangle quality measures
based on matrix norms, proposed in [9] in order to adapt these measures to the
case where reference elements are right isosceles triangles, is provided in extenso.
This adaptation is motivated by the idea of extending them to quadrilateral
quality measure. Then, the first quadrangle shape estimates to be considered are
skewness and stretching factor. They are examined in detail and it is explained
why they cannot provide quadrangle quality measures in a general context.
Because of these limitations, extensions of some triangle quality measures to
quadrilaterals are then provided. These quality measures are fully analyzed and
it is shown that they satisfy the desired extremal and, depending on the context,
asymptotic properties. When these asymptotic properties do not comply with
the requirements of the application, an alternate estimate introduced in [7]
is examined in detail. Finally, the quadrilateral quality measures based on
the FROBENIUS matrix norm, previously tailored to right isosceles reference
elements, are defined and studied. Several numerical examples illustrate the
theoretical results.

1 Preliminaries

1.1 Triangles

In all that follows, ¢ denotes a triangle with vertices F, F' and G, area Aj,
semiperimeter p;, inradius r, circumradius R, edge lengths e = FG, f = EG
and g = EF, and we denote the angle at vertex E (resp. F, G) as n (resp. ¢,
) and the radius of the inscribed (resp. circumscribed) circle of ¢ as r (resp.
R). In addition, the vertices E, F' and G have respective coordinates (g, yg),
(zr,yr) and (zG,ye) in an arbitrary orthonormal affine reference frame parallel
to the plane of the triangle ¢. The following standard norm-like notations will
also be used:

ltlo = min(e, f,g)
[t = Ve*+ f2+g? (1.1)
ltloo = max(e,f,g).

Some results from elementary geometry are assumed without proof (see for
example [4] for proofs and details). In particular, the following well-known
relations will be used:

2R=— = = = ,
2A4; sinp  sing  sing

efg e f g (1.2)

where A4, is given by
Ay = rpy, (1.3)

as well as by HERON’s formula:

Ay = \/pt(pt —e)(pi — f)(pe — 9)- (1-4)



Finally, it is recalled that the edge ratio is defined as:

[t
T = , 1.5
Itlo (15)
see [10] for a study of the behavior of 7, with respect to the extremal angles
of t.

1.2 Quadrilaterals

For the sake of conciseness, "quadrilateral" will hereafter mean a "planar, non-
degenerate and convex quadrilateral". Such a quadrilateral shall be denoted
generically as ¢ = ABCD, with area A, semiperimeter p, edges of lengths
a=AB,b=BC,c=CD and d = DA and denote the angle at vertex A (resp.
B, C, D) as « (resp. 3, v, 0) and 0 the arithmetic mean of either « and ~, or
B and 4, called the torsion. Norm-like notations, similar to those for triangles,
will also be used:

‘q|0 = min(aaba c, d)
lals = Va2+02+E+d? (1.6)
lglec = max(a,b,c,d).

Remark 1.1. The computation of A can be performed in several different ways.
In particular, it seems natural to decompose ¢ in two triangles, whose respective
areas are obtained in a straightforward manner obtained. Although twice more
costly, it is not a bad idea to compute the four possible triangular areas, since
this allows to detect, on the fly, whether or not ¢ is convex, non-convex, skew,
degenerate (cf. [7] for details). Practically speaking, this is of the greatest
interest, since both topological consistency checking and geometrical quality
measurement can be done at the same time.

Most of the useful metric equalities of triangles do not extend to quadrilater-
als, and this is the first obstacle to the generalization of results such as those
presented in [10] in the case of triangles. Nevertheless, HERON’s formula can be
generalized for quadrilaterals:

A=+/(p—a)(p—0)(p—c)(p—d) — abed cos? h. (1.7

Remark 1.2. This gives an opportunity to discuss the choice of o and + in the

definition of #. It is well known that the sum of the four angles of a convex
quadrilateral is equal to 27; hence, 6; = O‘Zﬂ and 0, = @ are supplementary.

It follows in particular that #; and 6 have opposite cosines, thus equal squared
cosines. Therefore, whatever pair of opposite angles is picked in order to define
0, (1.7) returns the same result, i.e., it is symmetrical.

1.3 Cocyclicity

It might be useful to recall some results about planar cocyclicity, and in particu-
lar the fact that, unlike triangles, quadrilaterals cannot necessarily be inscribed
in a circle. More precisely,



Definition 1.1. A quadrilateral is cyclic if it can be inscribed in a circle.

Ezample 1.1. The quadrilateral (@), illustrated Figure 1, which is homothetic to
the quadrilateral with successive vertices coordinates (v/3,1), (v/2,v2), (1,v/3)
and (—+/3,1), is cyclic.

A demonstration of the beautiful Inscribed Angle Theorem can be found in any
good elementary geometry handbook; using the classical notation for vector
angles, it comes as follows:

Theorem 1.1. P, ), R and S are cocyclic if and only if:

—_— — —_— —

(PG, PS) = (RG,RS) [n] (1.8)
and allows to readily deduce the

Corollary 1.2. q is cyclic if and only if « and v are supplementary.

Remark 1.3. According to Remark 1.2, Corollary 1.2 can be equivalently ex-
pressed using 3 and J instead of o and ~.

Figure 1: Cyclic quadrilateral (@).

1.4 Deriving quadrilateral quality from triangle quality

A natural approach to mesure the quality of any given non-degenerate convex
quadrilateral consists in seeing it as a pair of two non-degenerate triangles shar-
ing one common edge, which is also a diagonal of the quadrilateral. Hence, an
apparently good idea would be to examine the qualities of these two triangles,
but which quality ? Generally speaking (see [10] for a notable exception), the
quality of a triangle is considered to be optimal' only for equilateral triangles.
Unfortunately, the following example shows that using such triangle quality
measurements for quadrilaterals is not straightforward.

FEzxample 1.2. Figure 2 illustrates the case where ¢ is a rhombus, such that its
shortest diagonal has the same length as its edges, hence denoted as ¢. By

Imore precisely, reaches its strict and unique minimum, 1.



definition, ¢ can be decomposed either into two equilateral triangles or into two
obtuse isosceles triangles. In the general sense of triangle quality, the former
case is considered as optimal, while the latter is far from this. In other words,
the choice of the particular partition of ¢ in two triangles has an effect over the
resulting quadrilateral quality measurement; which one shall be chosen ?

Figure 2: The two possible triangulations of the same rhombus ¢.

The only certainty at this point is that either both triangular decompositions
of ¢ must be taken into account, or another approach of quadrilateral quality,
independent from the underlying triangles, must be used.

2 The quadrilateral space

The aim of this section is to define a proper set on which the analysis of quadri-
lateral quality measures will be relevant. In particular, the concept of equiva-
lence class will be used.

2.1 Homothecy equivalence classes

A quadrilateral can be seen as either a geometric or an analytic object. Although
the former is certainly more intuitive, the latter allows the use of calculus to
perform an analysis of quadrilateral quality measures. A consistent analytic
representation of quadrilaterals is one that is bijective with the set of geometric
quadrilaterals. In addition, quality measures in the general sense (cf. [7, 10])
do not depend on size, but only on shape; in other words, they are invariant
through homothecy.

Hence, it is more suitable to use an analytical representation of quadrilaterals,
up to homothecy.

Equality up to homothecy is an equivalence class, in the strict mathematical
sense: reflexive, symmetrical and transitive. Therefore, it allows the definition
of equivalence classes of quadrilaterals; in particular, any quadrilateral ¢ belongs
to one and only one equivalence class, and this class is the set of all quadrilaterals
which are homothetic to ¢. In addition, any equivalence class can be represented
by one of its elements, e.g., the only quadrilateral with unitary semiperimeter,



as illustrated by Figure 3. In other words, considering only the set of such
quadrilaterals is sufficient for quality measure analysis, since these measures
must be invariant to scaling. This set, which is in fact the set of all equivalence
classes?, is simply denoted as Q;.

Figure 3: Equality up to homothecy: the unique quadrilateral with unitary
semiperimeter represents the entire homothecy class.

2.2 Analytic characterization

Since any edge length of a non-degenerate quadrilateral ¢ is strictly smaller than
the sum of the three other ones, it follows that

at+bt+c+d 1

b+c+d 1 a
—_— >4+ —=1 2.1
2a QjL 2a >2+2a ( )

P
a

and, for the same reasons, ¥ > 1, £ > 1 and £ > 1. Hence, denoting as x, y and
z the ratios between three edge lengths to the semiperimeter of ¢, e.g., x = 2,

P
Y= % and z = ;c], it is clear that < 1, y < 1 and 2 < 1. In addition,

b 2p—d d
rytr=2FC_PC 5 & (2.2)
p p p
whence
I<z+y+2z<2 (2.3)
and p
0<2—x—y—z:5<1. (2.4)

Hence, on the one hand, the quadrilateral ¢; with consecutive edge lengths =z,
y, z and 2 —x — y — z is homothetic to ¢ (with ratio p); on the other hand, its

20r, equivalently, the quotient space of the set of quadrilaterals by the equality up to

homothecy.



semiperimeter is obviously unitary thus ¢; € Q;. In other words, ¢; is the class
representative of ¢, on which quality measure analysis shall be performed.
Now, the knowledge of the four edge lengths of a quadrilateral is not sufficient
to determine its shape3. For example, knowing that a quadrilateral has four
equal edge lengths only allows to conclude that it is a rhombus; nothing is know
about the angles of this rhombus which might be, in particular, a square.

Remark 2.1. This makes a noticeable difference with the case of triangles, for
which there is a bijection between, on the one hand, the ratios between edge
lengths and, on the other hand, the angles of this triangle.

In fact, the knowledge of a, b, ¢, d and, e.g., the angle «, completely determines
¢ and, in particular, the other angles (3, v and §, for an obvious reason: knowing
« allows to determine one of the diagonals, therefore the triangle opposite to «
is fully determined by its three edges, according to Remark 2.1. Simply stated,
this means that, in addition to edge lengths, quadrilaterals have one and only
one other degree of freedom, provided by any of their four angles. Thus, the set
of quadrilaterals can be seen as a subset of € IR® and, since angles are invariant
through homothecy, Q; as a subset of IR*. In other words, the quadrilateral
shape space is four-dimensional?.

2.3 Asymptotic configurations

As Qq is four-dimensional, it is not as natural to examine the asymptotic behav-
ior, as in the case of triangles, in particular because it is impossible to visualize®
an hypersurface of R®. Nevertheless, examining some usual configurations can
provide useful informations concerning some lower-level shape estimates, such
as the torsion or the stretching factor. For example, the set of parallelograms
up to homothecy has the nice property of being a 2-dimensional subset of Qq,
since a = ¢ and b = d. Moreover, these two degrees of freedom can be straight-
forwardly seen as the stretching factor and the torsion, and this allows a direct
relationship between the behavior of a quality measure to these parameters.
Another interesting asymptotic case occurs when two consecutive edges of g
tend towards alignment, in other words when ¢ gets close to being a triangle ¢,
as shown Figure 4. Although this is a somewhat intuitive notion, this situation
can be formalized as follows: precisely,

Definition 2.1. A triangular degeneracy occurs when one, and only one, angle
of a quadrilateral is close to m and none is close to 0.

Triangular degeneracy might be considered as either acceptable or not, i.e., the
quality measure should either remain bounded or diverge to +oo, respectively.
For example, in the context of hybrid meshes, it could be useful to have a
triangle-quadrilateral quality measure, which would not diverge in the case of

3or, equivalently, the knowledge of x, y and z is not sufficient to determine the homothecy

equivalence class.
4intuitively, since no vector field structure has been properly defined.
5at least, for human beings.



Figure 4: Triangular degeneracy.

triangular degeneracy of ¢, but rather continuously match along the transition
between the two kinds of polygons. To the contrary, most quadrilateral finite
elements solvers would handle triangularily degenerated elements poorly.
Provided these results concerning the analytical characterization of quadrilateral
shape, it is now possible to examine precisely the extremal and asymptotic
properties of several possible quadrilateral quality measures.

3 Edge ratio

It seems natural to extend 7, the edge ratio which has been defined for triangles,
to quadrilaterals. In this case, we have:

~ ls
T = .
lqlo

(3.1)

Remark 3.1. 7 can be seen as a generalization of the stretching factor, defined
in [12] for specific geometries. Therefore, it seems rather intuitive to extend
the use of this expression to all quadrilaterals, and 7 will be also referred to as
the stretching factor of q.

3.1 FExtremum

By definition, 7 > 1, with equality if and only if |¢|c = |¢|o, i.€., min (a, b, ¢, d) =
max (a, b, c,d), thus a = b = ¢ = d. Therefore, 7 has a unique absolute mini-
mum, 1, attained only by rhombii. Squares are only a particular minimal case.

3.2 Asymptotic behavior

3.2.1 Parallelogram

Obviously, if ¢ is a parallelogram, then either 7 = g or 7 = %. In particular,

7 is completely independent of the angles of g, which is not the case when
considering the edge ratio of a triangle. Intuitively, the behavior of 7 can be
seen as one-dimensional, with respect to the four dimensions of Q. This is
why it has been proposed for specific geometries, in particular for rectangles:
in terms of homothecy equivalence classes, they are completely characterized
by their length to width ratio, i.e., by 7. Minimal for and only for squares, it



increases and tends to 400 as the rectangle stretches, hence its name. To the
contrary, 7 is unable to provide any valuable when ¢ is a rhombus: either it
is square or very flattened, with 6 as close to 0 as desired, it is considered as
optimal by 7.

3.2.2 Triangle degeneracy

If ¢ degenerates towards a triangle ¢, the two following different cases may occur:

i. if two vertices tend to merge, then |g|o tends to 0. Thereore, 7 diverges
to +oo;

ii. otherwise, if the triangle degeneracy occurs with no edge lengths tending
to 0, then |g|op tends to a non-zero value while |g|o, remains bounded,
preventing 7 from degenerating.

In addition, a continuation of 7 to the edge ratio of the triangle occurs only if
|¢lo and |g|~ remain unchanged, when jumping from ¢ to ¢.

Clearly, neither the asymptotic nor extremal properties of ¢ correspond to what
is expected from a quadrilateral quality measure. However, it is a very intuitive
dimension of the quadrilateral space, thus useful for examining the behavior of
such measures.

Remark 3.2. The edge ratio also provides a triangle quality measure, optimal
only for equilateral triangles. It has the original property of accepting flattened
elements, but not needles for which it diverges. See [10] for details.

4 Skewness

Skewness does not seem to have been properly defined in a general context. We
propose the following definition:

1

BRI

(4.1)

As mentioned in Remark 1.2, the two possible values of 6, ; and 65, are sup-
plementary thus

122
m

1222
U

,]_+_

260,
4.2
| ’ . )

’ 2,

‘ 2%,

from which it follows that o is independent from the particular choice of either 6;

or 0 for . More precisely, o is symmetrical with respect to 3.



4.1 FExtremum

By definition, one has

20

0<f<m = 0<—<2 (4.3)
™
2
= —1<1——9<1 (4.4)
™
2
= 0<‘1——0 <1 (4.5)
m
26
= 0<1—’1—?‘§1 (4.6)
= o>1 (4.7)
In addition,
c=1 <— 1—’ _2 (4.8)
s
26
= |I1-—|=0 (4.9)
™
= 0=3, (4.10)

thus o reaches its unique and strict minimum when 6 = 7; in other words, using
Corollary 1.2, for cyclic quadrilaterals.

Although squares and, more generally, rectangles, are cyclic, the converse is
obviously untrue. In particular, the quadrilateral (@), introduced in Example 1.1
and illustrated Figure 1, is considered as optimal by o, and could even be
flattened as much as desired, provided its four vertices remain cocyclic.

4.2 Asymptotic behavior

It is clear that o strictly decreases (resp. increases) on |0, %] (resp. [5,7[);

2 27
moreover,

. 1 . 1
ali%+1—|1—¥|_ol_lff—1—}1—¥|_+OO’ (411)
since o(0) = 35 <resp. ﬁ) when 6 — 0% (resp. § — 7).

Figure 5 represents the graph of skewness vs. torsion. The previously mentioned
symmetry of o results in a symmetric graph, and the fact that the absolute value
is not C! in 0 results in a salient point® when § = 7.

Rectangles are only a particular case of inscribed quadrilaterals; therefore, any
rectangle is optimal, however stretched it is. Conversely, any non-rectangular
parallelogram, e.g., any non-square rhombus, is not optimal for o. In fact, o can
be also seen as one-dimensional, but along a different direction of Q; than 7.

64.e., left and right tangents at that point are not aligned.
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Figure 5: Graphs at two different scales of o as a function of 6.

In particular, triangular degeneracy is not caught by o: if, say, @« — 7 then,
according to Definition 2.1, v and, consequently 6; = QT'M, tend neither to 0
nor 7; hence, o does not diverge.

5 Edge to inradius

Among triangle qualities that extend naturally to quadraliterals is the compar-
ison of edge lengths with inradius. Of course, any convex quadrilateral does
not have, in general, an inscribed circle” and, hence, it might seem paradoxi-

cal to attempt to extend such edge to inradius comparisons to quadrilaterals.
However, in the case of a non-degenerate triangle ¢, it follows from (1.3) that:

2
Pt Py
— == 5.1
T .At ( )
Therefore, this quality measure can be directly extended to g:

2
¢ = %. (5.2)

Similarily, the aspect-ratio can be extended to g:

Plgloo
= ) 5.3
‘ A (5:3)
and these two measures are related via the following inequality:
b d 4
Czp(a—F +c+d) < D|q 00 _9, (5.4)

24 - 24

with equality if and only if p = 2|g|eo, i.€. if and only if ¢ is a rhombus.

"In fact, such an incircle exists if and only if o+ = 8+ 4.



5.1 FExtremum

Combining (1.7) and (1.3) gives:

4
— p

<= \/(p —a)(p—"0)(p—c)(p— d) — abed cos?6

and, as for triangles, it is much more convenient® to try to minimize h = &

rather than to maximize (. Clearly, & is a function of only the five variables a,
b, ¢, p and 6, and can be expressed as follows:

(5.5)

Y

(p—a)(p—b)(p—c)(a + b+ c—p)—abc(2p—a—b—-c) cos®d

h(a7 b7 C7p7 0) = p4

(5.6)
and it is clear that, for any a € IR, h(%, %7 %, 1,0) = h(a,b,c,p,0). This means
that h only depends on four variables, given by the ratios of three edges lengths
to the semiperimeter, plus the torsion angle #. In other words, h is invari-
ant through homothecy, as expected, thus ¢ is non-dimensional. We therefore

examine the variations of h : Q; — IR, where
h(o,9,2,0) = (1—2)(1—y)(1—2)(e+y+2—1) + zyz(s-+y+2—2) cos?0 (5.7)

whose first order derivatives are:

%(w, y,2,0) = 2x+y+2z—2) ((1 —y)(1—2)+yz (30829) (5.8)
Z—Z(az, y,2,0) = (x +2y+2—2) ((1 —z)(1—2)+az 00529) (5.9)
g—:(ﬂi, y,2,0) = (x+y+22—2) ((1 —2)(1 —y) + zycosd) (5.10)

% (z,y,2,0) = xyz(x +y + z — 2) sin 2t. (5.11)

According to (2.3), x + y + z < 2, hence, since none of z, y nor z are null,
the stationary-point condition implies that 20 € wZ thus, since 20 €]0, x|,

necessarily 6 = 5. Hence, (z,y,2, %) is a stationary-point if and only if

2e4+y+z—-2)1-y)(1—2) = 0
(x4+2y+2z—-2)1—-2)(1—-2) = 0 (5.12)
(t+y+22-2)1—-2)(1-y) = 0

which is equivalent, since neither x nor y nor z is equal to 1, to

224+y+2 = 2
r+2y+z = 2 (5.13)
r+y+2z = 2

8and, obviously, equivalent.



whose only solution is, clearly, (%, %, %) Therefore, h has a unique stationary

point, when the quadrilateral is a square. In order to check whether this case
corresponds, as expected, to a minimum, one has to make sure that the hessian
matrix is positive definite. The second order derivatives of h are given by:

0:
%(w,y,z,@) =2(y+ 2z —yz — 1 + yz cos?h) (5.14)
d%h )
a—?ﬂ(x,y,z,e) =2(x+z—xz— 14 x2zcos°0) (5.15)
d%h )
ﬁ(ny,z,&) =2(z+y— 2y — 1+ yzcos“h) (5.16)
0*h
W(a@ y,2,0) =22yz(2 —x — y — 2) cos 2t (5.17)
d%h )

8$—8y(x’y’z’9) =(1-2)2zx+2y+2—3)+202z+2y+2—2)cos’d (5.18)
d%h )

m(m,y, 2,0)=(1—-y)2x+y+22—-3)+y(2e+y+2z—2)cos?d (5.19)
d%h )

m(x,y, z2,0)=(1—2)(z+2y +2z—3) + x(x+ 2y + 2z — 2) cos“f (5.20)
0*h :

m(x, Y, 2,0) = yz(2 — 20—y — z)sin 2t (5.21)
0*h :

m(w, Y, 2,0) =222 —x — 2y — 2)sin 2¢ (5.22)
Y
0°h .

m(z, y,2,0) =ay(2 —x —y — 22)sin 2t (5.23)

1

O NN
O N N
OB NN

and is clearly negative-definite; more precisely, the characteristic polynomial of
the matrix

DN DN

(5.25)

O N =N
O = NN
= o O O

0

is (X —1)(X — 2)2(X — 8), thus the eigenvalues of Hj,  are —2 (double), —1
and —1. Hence, the stationary point is a mazimum, meaning that ¢ reaches its
only minimum for squares; in addition, this minimum, denoted as (g, is strict.
From this extremal property of ¢ can be deduced another one for ¢: firstly, since
(5.4) is an equality only for rhombii, it is the case for squares, thus (5 = 2ig.



Now, combining the minimization of ¢ with (5.4), leads to:

L2

DN [y

2 %j =0, (526)

showing that, as (, ¢ is minimal for, and only for, squares.

5.2 Asymptotic behavior
5.2.1 Parallelogram

In this case, « = v and 8 = 0 thus § = « or § = 3. Moreover, « and 3 are
supplementary, hence have the same sine. Therefore, the area of ¢ is given by:

A =absinf = |g|o|q|oo sin b, (5.27)

thus ¢ can be expressed as:

(Jalo + lqlo0)? 1 1
- = ~+2 2
‘ lglo]qloo sin®  sin@ T+ T + (5.28)

and ¢ as:

~ (alo + lale)lglee 1
" lalolgleosind =g T (5.29)

5.2.2 Rectangle

If ¢ is a rectangle, then (5.28) and (5.29) respectively become ¢ = 7+ % + 2
and ¢ = 7+ 1. Therefore, { and ¢ are two functions of 7, strictly increasing over
[1,4+o00[, respectively denoted as (- and ¢-. Moreover,

o) ~ 7~ (1), (5.30)

T—400 T—+00

which means that they asymptotically behave as 7 for rectangles. In particular,
(5 and ¢, diverge to 400 when 7 does.

5.2.3 Rhombus
If g is a rhombus, then it follows from (5.28) that:

(=2=

5.31
sin 6 (5:31)
which gives a direct relation between these quality measures and the torsion of
the rhombus, since they reduce to two functions (, and ¢, depending only on 6,
with {, = 2i,. Obviously, they both strictly increase (resp. decrease) on ]0, 7]
(resp. [§,7[). They also diverge to 400 at the bounds of |0, [ since, using the
fact that sinf = sin (7 — 0),

Co(0) = 2t4(0) ~ 9 (5.32)

T—0F

Col0) =2u0(0)  ~

T—T™ 7T—9.

(5.33)



The relative sensitivities of { to stretching and torsion are now discussed, by
solving (o(7) = (5 (0), i.e,

4 728in6 + 2(sin 6 — 2)7 + sind
. é : N =
sin 6 Tsinf

1
T+ +2= 0, (5349

which can be solved either for 7 or . In the former case, (5.34) reduces to
finding the real roots of the polynomial

P: = X?sinf +2(sinf — 2) X + sinf (5.35)

whose determinant is

Ap, =14 ((sin9 —2)? — sin? 9) (5.36)
= 16(1 — sin ) (5.37)
>0 (5.38)

with equality if and only if 6 = 7. In this case, 1 is the only root of P, i.e., ¢
is a square. Otherwise, 0 < 1 —sinf < 1, hence P has two distinct real roots;
in addition, 1 —sinf < y/1 — sin 6, thus

2 —sinf —2v1 —sinfh < sinf < 2 —sinf + 2v/1 — sin 6. (5.39)

Combining (5.39) with the fact that, by definition, 7 > 1, it follows that, for
any given 6 € ]0,7[, (8.18) has the following unique solution:

2 —sinf +2v1—sinf (V1—sinfd+1)?
T= = .

4
sin 0 sin 6 (5.40)
Moreover, solving (5.34) for 6 obviously brings two possible solutions, arcsin (ri—Tl)z

and 7 — arcsin (Ti—q)z. In fact, they both correspond to the same shape for ¢,
since they are supplementary.

5.2.4 Triangular degeneracy

In the case where ¢ degenerates towards a triangle g, it is obvious that both
perimeter and area of ¢ tend with their respective counterparts in ¢. Hence,
¢(q), in the sense of quadrilateral quality, tends towards ((¢), in the sense of
triangle quality. In particular, { does not diverge during triangular degeneracy.
From both extremal properties and asymptotic behavior that have been demon-
strated, one can conclude that ¢ can be extended as a generic quality measure,
suitable for both triangles and quadrilaterals; in addition, a continuous transi-
tion between these two kinds of elements is ensured. However, this particular
property might be, in some respects, a major drawback since, for some applica-
tions, one might wish to avoid triangular degeneracy of quadrilaterals. In this
case, the quality measure should diverge to infinity, rather than tend towards
the quality of the limiting triangular element.



6 Remembering diagonals
The following quadrilateral quality measure is proposed by [7]:

— |Q|2 hmax

min; A; (6.1)

where A; denotes the area of the triangle whose edges are those of ¢ adjacent
to vertex ¢ and hpax = max (AC, BD, |q|). In particular, |¢lecc < hmax-

6.1 FExtremum

Applying CAUCHY-SCHWARZ inequality, which is

k=n
(V (u1, ..., un) € RY) Zuk < (6.2)
k=1
to the edge lengths of ¢ shows that
a+b+c+d<\/4(a? +b2+ 2+ d?) (6.3)
thus p < |g|2, with equality if and only if ¢ is a thombus. In addition,
min A4; < g (6.4)
with equality if and only if ¢ is a parallelogram. Hence,
P lql2
EaPe .
A T 2min; A; (6:5)

with equality if and only if ¢ is a rhombus. Therefore, if ¢ is not a rhombus,

00 0o hmax
_ Plale _ lalelaloe gl v _ Q. (6.6)
A 2min; A; T 2min; 4; 2

L

QSL: p“]|oo < ‘Q|2 hmax _ g (67)

.A -2 mini .AZ 2

[\

and, in particular, { < Q.

6.2 Asymptotic behavior
6.2.1 Parallelogram

If ¢ is a parallelogram, then

(Vie {A,B,C,D}) mind; = é = “”0"1'%8”“9



and, using AL KASHI's Theorem, it is obvious that

BD = a2+ —2abcosa (6.9)
AC = /a2 + b2 —2abcos 3 = \/a2 + b2 + 2abcosa (6.10)

since a and (3 are supplementary. Hence,

max (AC, BD) = /a2 + b2 + 2ab |cos a| > max (a,b) = |q|oo (6.11)

thus

Bmax = \/a2 + b2 + 2ab|cosa| = \/|q|g + 1912 + 2|¢lolg|co|cos 8]. (6.12)

Finally,
lgla = v/2(a? +b%) = 1/ 2(|a[5 + [a]%) (6.13)
therefore
21/2([qZ + [q12) (a2 + Ja]% + 2 ~
o 2B 1o+ 2aholalcleost] o
|glo]g|oo sin
_ 2\/2(1+T2)(1+T2+2T|COS€|). (6.15)

Tsinfd

6.2.2 Rectangle

In this case, (6.15) shows that Q becomes the following function of the stretching

factor:
24/2(1 2)(1 2 1
Clearly, Q_ strictly increases over [1, +oo[ and
s(r) 221 (6.17)

6.2.3 Rhombus

In the case where ¢ is a thombus, then it follows from (6.15) that Q simplifies
as a function of the sole torsion:

44/2(1 4+ |cos b))

Qo (0) = Snd (6.18)
which diverges to +oo in both 0" or 7=. More precisely,
Q,(0) ~ i (6.19)
r—o0t 0
o,() ~ (6.20)




6.2.4 Triangular degeneracy

In case of a triangular degeneracy of ¢ towards a triangle ¢,

(3i€{4,B,C.D}) limA; =0 (6.21)
q—)

which implies in particular that min; A; tends to 0, while neither |g|2 nor Amax
do; thus, by definition, Q diverges to +oco. In other words, Q detects triangular
degeneracies, while neither ¢ nor ¢ do. Consequently, Q is not continuous with
any underlying triangle quality measure, unlike ¢ and «.

Remark 6.1. Clearly, this behavior is due to the fact that the denominator of
Q is no longer the entire area of the quadrilateral, but the minimal triangular
area. Variations of ¢ and ¢ can be designed consequently, if the goal is to detect
triangular degeneracy.

An example of how (, ¢ and Q behave in case of triangular degeneracy is provided
by the following example:

Ezample 6.1. Let <>w denote the kite such that ABC is a unitary equilateral
triangle, while AC'D is iscosceles in D, with AD = CD = z, as illustrated
Figure 6. Obviously,  must belong to ] %, +00o [ but, since the aim is here to

Figure 6: Kite QL

examine the case of a triangular degeneracy, the interval is limited to ] %, 1 Tt
is straightforward to determine (, « and Q as function of x when ¢ :<>w. In
fact,

. 1/, 1
HlilIl.Ai(l‘) = V¥ (6.22)
plz) = 1+z (6.23)
lgl2(z) = 2(1 + «2) (6.24)
lqloo(z) = 1 (6.25)
Alx) = ?—&—i\/ﬂ—i (6.26)

Hence, when © — %, both ¢ and ¢ tend towards finite values (respectively, 3v3
and 2\/5), while Q — +o0.



7 Adaptation of k5 to right isosceles reference tri-
angles

An interesting approach to estimate triangle quality has been proposed by var-
ious authors (cf. [2, 6, 8]), based on the singular values of a matrix which
expresses the affine transformation between the mesh element and a given ref-
erence element. More precisely, these works have focused on the case where the
reference element is a regular simplex, since this element is generally considered
to be the best possible for isotropic simplicial meshes. An in-depth examination
of the variations of such quality measures, as well as a comparison with other
quality measures has been made in [10].

It does not seem that the full derivation, in the case where the reference element
is a right isosceles triangle, has yet been done by other authors; one reason is
that such elements do not generally correspond to the kind of triangles that
are wished in the context of finite element analysis. However, in the goal of
extending this measure to quadrilateral meshes, such elements become naturally
the desired ones.

7.1 Construction

As described in [2], the edge-matriz of a triangle t is defined by:

T(): ( rp —TEp TG —TE ) (71)
Yr—YE YG —YE

and let W be the edge-matrix of a reference isosceles right triangle, for example

W<(1) (1)) (7.2)

meaning that W is, simply, the identity matrix of IR?. Hence, ToW ™! = Tj
is the matrix that maps the reference element into ¢. Using the same ideas as
in [2], it is possible to define matrix-norms based on the singular values o of
Ty. Obviously, the symmetry which arises when W is an equilateral triangle
vanishes with this new reference element. In particular, ¢ is considered as being
optimal only if the right angle is in A. This property allows a strict control, not
only over the shape of ¢, but also on the vertex at which the right angle should
be. The singular values are given by the positive square-roots of the eigenvalues
of the positive definite matrix T¢ Tp. Now,

¢  EF-EG
TOTTO = ( ﬁﬁ f2 > ) (73)

where - denotes the usual scalar product. The singular values o of Tj are thus
obtained from the characteristic equation of T Tp as

—

ot = (f2+¢%)0% + f°¢* — (EF -EG)* =0 (7.4)



or, equivalently,
ot — (2 + g% +4A2 =0. (7.5)

Hence,
o tos=f*44° (7.6)

and o109 = 24; where 07 and 03 (0 < 01 < 02) are the two roots of (7.5). A
quality measure can be constructed from the condition number of any unitarily
invariant norm of the matrix Ty (cf. [2]). One such family is derived from the
SCHATTEN p-norms defined by:

Np(To) = (of +0§)/" . pel,+oo] (7.7)
The case p = 2 is the FROBENIUS norm, the limiting case p — oo is the spectral

norm and the case p = 1 is the trace norm. A non-normalized quality measure
is given by the condition number «,(Tp) which is defined as

_ _ 1/
tip(To) = [(0219+‘75) (01p+02 p)] " (7.8)
In the particular case p = 2, using (1.2), it follows that
02 + o2 24 g2 24 g2
HQ(T()) _ 1 2 _ f g _ f g (79)

J102 2./4,5 N fgSiIl’I]

thus k2(Ty) depends only on metric and angular parameters of ¢, and therefore
can be denoted unambiguously as a function of t. In order to avoid the confusion
with the “classic” ko triangle quality measure, with equilateral reference element,
a slighty different notation shall be used, e.g.,

kg () = K2(To). (7.10)

Now, assuming that & = i, which is allowed since ¢ is non degenerate and thus
g # 0, it then follows that

E+1 1\ 1
5 (t) = = - 7.11
2 (1) Esinn §+§ sinn ( )
or, in entirely angular terms, since (1.2) shows that { = :;;‘f;,

Ky (t) = Sing | sy 1 :S.m%.“h.l?w. (7.12)
siny  sin¢g / sinn  sinnsin¢siny

Remark 7.1. As demonstrated in [10], the following angular identity arises in
the context of equilateral reference elements:

sin?n + sin” ¢ + sin® ¥
sin 7 sin ¢ sin

K9 (t) =

(7.13)



and is invariant through angle permutation®, unlike (7.12). This is intuitively
clear, since equilateral triangles are Gs-invariant, while right isosceles triangles
are not. Therefore, since 7, ¢ and ¢ are supplementary, the surface z = ka(t)
can be equivalently represented as a function of any angle pair of ¢, while this is
no longer true for z = k3 (t), for which at least one angle must be specifically
chosen. In particular, if one angle is chosen to be 7 (the one which is right,
ideally, for x5’), then the second is arbitrary and can be, e.g., ¢. In this case, it
follows from (7.12) and (7.13), respectively,

sin? ¢ + sin? (n + ¢)

5 (t) = .14
2 (1) sinn sin ¢ sin (1 + ¢) (7.14)
and ) ) 2 )
sin”n + sin” ¢ + sin” (n + ¢
t) = 1
ra(t) sinnsin ¢ sin (n + ¢) (7.15)
7.2 Ezxtremum
According to (7.11), consider the mapping
k: Rix]0O,n[ — R’
1 (7.16)
1
e — (6 ) g

which is C* over the open domain IR’ x] 0, 7 [; hence, any local extremum of k
is attained at a stationary point. The first order derivatives are:

ok 1 1

a—g(ém) = (1 - 5—2> 7 (7.17)
ok _ 1) cosn

a_n(fvn) = (f + 5) sn’ 1y (7.18)

and, given the definition domain, the only stationary point is (1, 7). Again, the
nature of this point can be examined by the means of the hessian matrix of,
assembled with the second order derivatives of k:

Py - 2 -
Chen = @+%>?i%§%§ﬁ (7.20)

which gives, when (§,7) = (1, %),
25205 - i

9or, in less rigorous but simpler terms, symmetrical.



% (LT) =0 (7.23)

Thus, the hessian determinant is equal to 4 > 0 and the first diagonal entry is

2 > 0. Hence, the hessian matrix is locally positive definite around the critical

point, which therefore corresponds to a strict local minimum of k. Since k is C*°

over its open and connected definition domain, the unicity of the critical point

ensures that this minimum is, also, absolute. In other words, k3 (¢) is minimal
s

only for right (7 = %) isosceles ({ = 1 & f = g) triangles. In this case, the

value of k3 (t) is, obviously 2, which provides the normalization coefficient.

Remark 7.2. If t is equilateral, then k3 (¢) = % Z 2.31 > 2, as expected since

the reference element is no longer equilateral.

7.3 Asymptotic behavior

A needle degeneracy occurs when one, and only one, of the angles of ¢ tends to 0
(¢f. [10]). This implies none of them tends to m, otherwise there would be two
angles tending to 0. Hence, one and only one of the sines in (7.12) tends to 0,
implying that the numerator tends to a non-zero value, while the denominator
tends to 0. Therefore, k3 (t) — + 0.

In the case where t flattens, i.e., one of its angles tends to m, either n — =«
(flattens in E), or n — 0 (flattens in F or G). In both cases, siny — 0 thus,
combined with the fact that f—&—% > 2, it follows from (7.9) that k3 () — +o0.

Remark 7.3. In the case where t is a right triangle, but not necessarily right
isosceles in F, it follows from (7.11) that:

— if t is right in E, then k3 (t) = fz;'gg?, which equals 2 if and only if f = g,
and tends to 400 as either 5 or g does (needle degeneracy);

— if ¢ is right in F, then k3 (t) = %, which at best equals 2v/2, when
e = g1/2, and tends to +o00 as either S or 9 does (needle degeneracy). In

particular, if ¢ is also isosceles, then k3 (¢) = 3. For symmetry reasons, the
results are obviously the same if ¢ is right in G.

Figure 7 provides a graphic comparison between the respective behaviors of o
(¢f- [10] for details) and k3. In fact, three different z = k3 surfaces can be
defined, depending on which couple of angular variables is picked, because of
the asymmetry explained in Remark 7.1. Therefore, at least concerning xg,
either an n-axis must be specified, or neither of the two axes!® actually are
associated to n. In Figure 7, n is in abscissa and, as expected, the two surfaces

have different bottoms: (5,7, 1) for z=k3 and (3, §,1) for z=rs.

2

10in fact, in this case, 1 is implicitly represented along the = 4 y = 7 axis.



Figure 7: Surfaces z = % (left) and z = %2 (right) as functions of 7 (abscissa)

2
and either ¢ or ¢ (ordinate), for z < 1.5 (up) and z < 3 (down).



8 Extending ks to quadrilaterals

Section 7 provides a matrix-based triangle quality measure to the case where the
reference element is a right isosceles triangle with, in addition, a specific control
over which edge is the hypotenuse. The main motivation of this modification is
to allow, in a second step, the adaptation of k5 to quadrilaterals.

8.1 Construction

Considering the generic planar quadrilateral g, four different triangles might
be evaluated by the means of k3: t4 = DAB, tg = ABC, tc = BCD and
tp = CDA, with respective edge-matrices T4, T, Tc and Tp. Now, it follows
from (7.1) that

0 0
TA+TB+TC+TD(O 0) (8.1)
i.e.,
T3 = -1y -1, — 1. (8.2)

In other words, it is unnecessary to evaluate the four edge-matrices at each
vertex of the quadrilateral, since any of them is a linear combination of the
three other ones. This simply means that, given three vertex angles and edge
ratios, the quadrilateral is fully determined, up to homothecy.

Now, considering k3 (t;), as it has been previously modified for right isosceles
triangles, the qualities of each of these four triangles are, respectively,

a® + d* a4+ b°
s(ta) = s(tp) = — .
ki (ta) adsina’ w2 (ts) absin B’ (8.3)
b2 4 2 c? 4 d?
5(tc) = 5 = . 4
2 (tc) besiny’ w2 (tp) cdsin § (84)

According to (8.1), k3 (tp) is related to k3 (ta), k3 (tp) and k3 (tc), but this
dependency is no longer linear, since singular values and, hence, polynomial
equations, are involved. Therefore, although it might appear as more elegant
to design a quadrilateral quality measure, depending only on three of the un-
derlying triangle qualities, it is certainly much more costly. For this reason, a
more realistic and certainly more efficient idea is to take into account the four
qualities. For instance, one might take the worst of these qualities, in other
words their max norm:

k5" (q) = max (k3 (ta), k3 (tp), K3 (tc), K3 (tp)).- (8.5)

Remark 8.1. As always, the problem with the max norm is that, provided the
worst triangle remains the same, it is intrisically unable to take into account
quality variations of the three other ones, as illustrated by Figure 8: k5 cannot
detect the fact than a quadrilateral is “less” distorted than the other.



Figure 8: Both quadrilaterals share the same 5.

A natural attempt to address the case mentioned in Remark 8.1 is to consider
the arithmetic mean instead of the max norm:

a(g) = A TR0+ r500) + i) 5)

Remark 8.2. The choice of the arithmetic mean is arbitrary without any further
justification. One might, e.g., prefer to use the euclidean norm instead.

8.2 FExtremum

It has been proved in Section 7 that
(Vie {A,B,C,D}) wi(t:)>2 (8.7)
with equality if and only if ¢; is a right isosceles triangle. Hence, by definition,

2424242
mal) 2 = =2 (53)

with equality if and only if all x5 (¢;) are equal to 2. In addition,
k¥ (q) =2 <= (Vie{A B,C,D}) ky(t;) =2 (8.9)

whence both x5° and k35 reach their unique absolute minimum only when ¢
is a square. Moreover, they have the same minimum, 2, which provides the
normalization coefficient.

8.3 Asymptotic behavior
8.3.1 Parallelogram

As explained in Paragraph 5.2, when ¢ is parallelogram it follows that sina =
sin 8 = sin 6; in addition, a = ¢ and b = d, whence

2 2
(Vi€ {A,B,C,D}) ri(t)=Lt0

1
absin @ (8.10)



from which it follows that

@+ g3
r3(g) = ryle) =~ = 2—2 (8.11)
or, equivalently,
' ’ . ; |alg + lal3
r5 (@) = ralg) = T ——= (8.12)

 lalolglec sin 6

from which the following expression in terms of stretching and torsion of s} for
parallelograms arises:

w5 () = K3(0) = — (T+1). (8.13)

sin 6 T

Remark 8.3. In the context of the ko triangle quality measure, with an equilat-
eral reference element, it is shown in [10] that the following identity holds:

Ko (t) = 11
2V3A,°

which appears to be similar to (8.11), up to a constant factor. It is quite
satisfactory to obtain the same result, up to a constant factor, for triangles!!
and parallelograms.

(8.14)

8.3.2 Rectangle

If ¢ is a rectangle, then (8.13) can obviously be simplified as follows:

55 () = Rbla) =7+ - (8.15)

thus k3° and k3 reduce to the same function, denoted as ko, which depends only
on the stretching factor of ¢, and is obviously strictly increasing over [1, +oo].
In addition, its asymptotic behavior is given by

Koo (T) o T e Ca(7), (8.16)

which implies, in particular, that x,_ diverges towards +oo when 7 tends to
+00.

8.3.3 Rhombus

It is also interesting to notice that, in the case where ¢ is a rhombus, (8.13)
show that both xk3° and kj reduce to a function of 6:

2
sin 6

r5 (@) = r2(q) = Koo (0) = (8.17)

11in the usual case, when the reference element is equilateral.



which strictly decreases (resp. decreases) on |0, 7] (resp. [5,7[) and is equivalent
to 2 (resp. —2;) when § — 0% (resp. § — m~). In particular, ko, diverges to
+o00 when 6 tends to either 0" or 7~.

The relative sensitivities of k3° and k) to stretching and torsion are now dis-

cussed, by solving ko (7) = Ko, (0), i.€,

1 2 2 & —92 o3
S PN 74 8in T—|—bln9:O (8.18)

7 sinf Tsin6

and solving for 7 reduces to finding the roots of the polynomial X2 sinf — 2X +

sinf. Obviously, these roots are 1islif1°;9‘, corresponding to a double root only

when 6 = 7 and, hence, 7 = 1, i.e., if and only if ¢ is a square. Conversely,
7 = 1 implies sinf = 1 thus § = 5. In the case where 6 # 7, it is clear that
1+ |cosf| > sinf > 0, hence % complies with the fact that 7 > 1. Now,

0€]0, w[\{%} implies 0 < sin# < 1 thus sin® @ < sin6 and

1 —|cosf] < 1 —cos? =sin® 0 < sin . (8.19)

Therefore, W < 1, hence for any 6 € 0, 7[, (8.18) has the following unique
solution:

1+ |cos 0|
= 8.20
T sin ¢ (8:20)
Moreover, solving (8.18) for § obviously brings two possible solutions, arcsin 72211

and 7 — arcsin 722_11. In fact, they both correspond to the same shape for ¢, since

they are supplementary.

Figure 9 represents the respective stretching factor vs. torsion sensitivities of
and b, using (5.40) and (8.20). Both graphs have a salient point in (7, 1), since
neither the absolute value (for ¢) nor the square root (for x}) functions are C*
in 0.

' P4
17.5} 1 !
1 ! 4
15 ‘: !
| ! 3.5
12.50 !
\ | 3
10 \\ /
\
7.5 2.5
5 2
2.5 - 1.5

Figure 9: Graphs at two different scales providing the respective sensitivities of
¢ (dotted) and 3 (solid) to stretching wvs. torsion.

8.3.4 Triangular degeneracy

In case of a triangular degeneracy of ¢, i.e., at least one of its angles tends to ,
it follows immediately from (8.3) and (8.4) that at least one of the x5 (¢;) tends



to +00, as do k5°(¢) and k4(g). In other words, both k3° and k3 diverge in case
of triangular degeneracy.

Remark 8.4. An other quality measure could be defined by generalizing (8.11)
to all quadrilaterals. In the case of a triangular degeneracy, this measure would
not diverge because the denominator (the area) would not tend to 0, while the
numerator (the sum of all squared edge lengths) remains bounded. Moreover,
it would not be continuous with the k5 triangle quality measure, even after
adjusting normalization coefficients, since A — A; while |q|3 /4 [t[3. This
makes a clear difference with ¢, for which triangular continuity is ensured by
the fact that p — p;.

9 Numerical results

Because of the four-dimensionality of Qp, it is impossible to provide compre-
hensive plottings of quadrangle quality measures, e.g. as in [10]. The alternate
approach used here is to test these measures over a representative set of quadri-
laterals. In addition, 7, o, (, ¢, Q, k3 and kS° are tested on various quadrilateral
meshes.

9.1 Reference quadrilaterals

The proposed set of reference elements consists in the previously introduced
quadrilaterals O, @), ¢ and <>x (with = 0.51 and = = 0.501), along with:

- and , rectangles with respective stretching factors of 2 and 100;
- ¢q1 and g9, denoting the two quadrilaterals of Figure 8;
- &, a rhombus such as AB = 5AC.

The corresponding normalized quality measures are given Table 1, from which
several remarks can be made:

— as mentioned before, neither 7 nor o make sense as quality measures in a
general context; however, when considered together, they provide valuable
information about quadrilateral shape along two “dimensions” of Qy;

— as expected, neither ¢ nor ¢ detect the triangular degeneracies which ap-
pear in <), 5; and, more markedly, in <), ,; - The fact that, nevertheless,
v grants worse qualities to these quadrangles than ¢ does is due to the
“unsmoothing effect” implied by the presence of |¢|, in the former;

— as expected, x5 and k5° are disconnected as soon as asymmetry appears. In
this case, k5 is more sensitive to distortion than k5. Moreover, although
kb is supposed to be more discriminant than x5 when the worst part!2
of ¢ is invariant, this difference is not significant between ¢; and gs;

12in the sense of the ko triangle quality measure.



T o i( %L ﬁQ %Hé %/{3"
O 1 1 1 1 1 1 1
2 1 1125 | 1.5 1.25 | 1.25 | 1.25
100 1 25.5 | 50.5 50 50.01 | 50.01
0 1 1.5 | 1.155 | 1.155 | 1.414 | 1.155 | 1.155
& 1 7.841 | 5.025 | 5.025 | 7.071 | 5.025 | 5.025

Oosn || 1.961 | 1.261 | 1.18 | 1.562 | 5.585 | 1.588 | 2.588
Ovsor || 1.996 | 1.415 | 1.255 | 1.672 | 17.68 | 2.969 | 7.933
@ 7.4 1 | 1.885(3.389 | 33.9 | 2957 | 3.604
@1 || 2.603 | 1.484 | 1.437 | 2.152 | 4.456 | 1.598 | 1.929
@ || 2112 | 1.824 | 1.498 | 2.085 | 3.428 | 1.602 | 1.929

Table 1: Qualities of a representative set of quadrilaterals.

— @ is extremely sensible, which is not a problem per se, but in this case one
can wonder whether it is justified to obtain, roughly, Q(@) ~ 10Q9(g2). In
addition, Q(q) is significantly worse than Q(q2) as opposed to, e.g., the
results obtained with ks-based quality measures. Depending on applica-
tion, one might decide which of ¢; or ¢ should be considered as best, but
Q seems to be slightly unbalanced overall

9.2 Quadrilateral meshes

An other perspective on mesh quality measures is to examine how they behave
on actual meshes. In this goal, it will be made use of six different quadran-
gular meshes, denoted as L; to Lg, of a given planar domain, as illustrated by
Figure 10. These meshes differ in regularity, density an isotropy, and these
variations should appear in terms of mesh quality. There are numerous ways
to evaluate the quality of an entire mesh from that of its elements; discussing
them is beyond the scope of this article. The most natural approach consists in
considering the range!® and the arithmetic mean of element quality measures
across the entire mesh. The corresponding results are given in Table 2. From
these numerous results, it appears that:

— clearly, Q@ and x$° are much more discriminant than the other quality
estimates. For example, both L; and L4 contain very distorted elements
(as confirmed by worst torsion and skewness) and the respective mazima of
Q and k3 across these meshes are much greater than for the other quality

134.e., the best and the worst element qualities.



Figure 10: Six different quadrilateral meshes of the same domain. Data courtesy
of INRIA Rocquencourt, France.



T v 1¢ 3 s | | 3FF

-+ -+ -+ -+ -+ -+ -+

L, 1.66 1.31 1.2 1.5 2.51 1.35 2.64
1 5.81 1 121 | 1 103 1 155 1 103 1 272 | 1 162

Ly 1.65 1.2 1.12 1.39 1.93 1.2 2.02
102 623 |1 538 |1 478 | 1.01 7.82 | 1.02 18.8 1 5.7 1 241

Ls 1.63 1.13 1.07 1.33 1.66 1.12 1.8
1.04 348 [ 1 213 1 1.6 1.02 234 | 1.03 705 |1 214 | 1 4.48

Ly 1.94 1.19 1.15 1.52 2.22 1.26 2.24
1.02 639 | 1 265 | 1 347 | 1.03 6.21 1.06 36 1 551 |1 16.7

Ls 1.56 1.14 1.07 1.3 1.66 1.12 1.78
1.03 4.43 1 21 1 204 | 1.02 357 | 1.03 708 | 1 244 | 1 6.29

Lg 1.51 1.1 1.05 1.26 1.59 1.09 1.69
1.02 3.7 1 207 (1 149 | 101 235 | 1.02 712 | 1 213 | 1 448

Table 2: Arithmetic mean and range of quality measures across six different
quadrilateral meshes of the same domain.

measures. In fact, these specific examples exhibit a strong correlation
between Q and 3 which is not a general rule, as exhibited by Table 1;

— the unbalanced behavior of Q, suspected from the results of Table 1, is
not confirmed here;

— on the contrary, x5 and x5 are largely disconnected: the trend observed
in Table 1 for some configurations is confirmed across entire meshes;

— L3 is considered as very good mesh by ¢ but not by Q nor xk5°. A close
visual examination of this mesh shows that only triangular degeneracies
can be observed, explaining why ( does not detect them.

Conclusions and future work

The results demonstrated in this article concerning quadrilateral quality mea-
sures are summarized in Table 3. Column “= 1” indicates which particular
element optimizes the normalized quality; columns “[ss] ”and © provides the
asymptotic behavior of the normalized quality when, respectively, the element is
a rectangle with stretching factor 7 tending to 400 and a rhombus with torsion
0 tending to 0; column ©; column “— A” indicates whether measure diverges or
not in the case of a triangular degeneracy of the quadrilateral. Depending on the
specific needs of the user, Table 3 allows one to choose which quality measure
fits one’s specific needs. In particular whether divergence to +oo in the case



=1 © — A
T rhombus | ~ 7 =1 no
o inscribed | =1 | = % no
Le square ~IT |~ no
1 q 1 0
1, square | ~Z | ~41 no
2 q 2 9
1 T V2
EQ square | ~ g | ~ %5 | yes
11 square ~ z ~ L es
5K q P 9 y
Lo square ~Z| ~1 es
22 q 2 ] y

Table 3: Summary of quadrilateral quality measures.

of a triangular degeneracy is desireable or not. Moreover, it seems that, in the
case of Q, considering (@) as five times worse than <>0,51 is certainly subject to
caution. Overall, k5 and k5 appear to be the best-behaved planar quadrilateral
quality measures, in the case where triangular degeneracy detection is desireable.

Among other interesting questions remaining to be addressed are:

— point-placement strategies; in other words, given three vertices and a qual-
ity measure, what is (are) the optimal fourth vertex position(s) ?

— possible extensions to quadrilateral-sided hexahedrons;

— the correlation of these results to actual numerical quadrilateral-based
numerical finite element or finite volume computations.
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