EFC Topic 4.1
Measurements for Simulation benchmarking

Presented by Brian Peterson (TU Darmstadt)

Objectives of 4.1

Contents:

• Engine participants to EFC
• Summarize available data
• Scope and uniqueness of data
• EFC subtopics addressed by data
Contributions

1. **Transparent Combustion Chamber Engine**, David Reuss, dreuss@umich.edu

 TCC (GM/UM)

2. **Spark-Ignited Direct-Injection Engine**, Brian Peterson, peterson@csi.tu-darmstadt.de

 SIDI (TU Darmstadt)

3. **SGEmac Experimental Database**, Cecile Pera, cecile.pera@ifpen.fr

 SGEmac (IFP)

4. **Sandia H\(_2\)** Direct-Injection Engine, S. Kaiser, sebastian.kaiser@uni-due.de

 H2ICE (SNL/U DuE)
1. TCC (GM/UM)
TCC Engine Measurements and LES Working Group

Simulations:
Tang-Wei Kuo, Xiaofeng Yang, General Motors Company, Sponsor
Chris Rutland, University of Wisconsin
Daniel Haworth, Pennsylvania State University

Measurements:
Volker Sick, Dave Reuss, University of Michigan

Scope:
• Provide accurate and repeatable data base for RANS and LES model validation.
• Identify sources and mitigate CCV.
Design Intent:

- Transition from Imperial College analogue for simulation benchmarking circa 1990.
- Platform for fundamental, empirical studies of CCV.
- Simulation Grid Friendly
 - Geometrically simple
 - Efficient multi-cycle simulation*
- Optically accessible for measurements.

- Features to exaggerate fluid mechanics
 - “Pancake” chamber & Undirected port → high CCV
 - Small $D_{\text{valve}}/D_{\text{bore}}$ → high shear @ low rpm

* Haworth, OGST, 1999
History of experimental installations

TCC - 0 GM R&D, 1995 – 2002 publications
- GM Intake and Exhaust systems, single-angle valve seat
- PIV, RANS, LES development in reciprocating ICE
- Motored and fired data

TCC – II University of Michigan, 2010 – 2014 publications & posted data
- UM intake and exhaust systems
- Full quartz cylinder, improved piston ring, two-angle valve seats
- Motored data

TCC – III University of Michigan 2013 -
- Added: fuel (C$_3$H$_8$), N$_2$ dilution, flame arrestors → new GT Power model
- Refurbish valve train, (four-angle seats)
- Motored and fired data
TCC-II Engine

5 Measured Pressures

92mm x 86mm BxS, 10:1 CR

"Closed" & heated intake-air metering system
GT Power model available
Engine Operation

- Motored at 400, 800 & 1600 rpm
- each 5 ca deg, 70 continuous cycles
- 3000 cycles at 100 & 300 ca aTDCexh
- 2 and 3 component PIV measurements
- 1.6 & 2.9 mm resolution, recorded simultaneously
Data Integrity

- Dynamic measurement of Instrumentation timing:
 - encoder–piston TDC timing
 - valve lift & open/close ramps.

- Optical-engine compression-ring design → blowby < 1% at 95 kPa

- Pressure & Velocity Measurement range, noise, & uncertainty documented.

- Test-to-test engine operation repeatability
 - Operation protocols
 - Redundant transducers & daily calibration
 - Operation control-charting & post-test evaluation
Data Integrity (continued)

- Extensive intake, exhaust, and cylinder-pressure comparative analysis

![Graphs showing data integrity analysis]
Data and Analysis Focus

Intake Jet, 100 CAD aTDC

Undirected TCC Intake Flow Exhibits:
- Large CCV of intake jet
- CCV yields averaging-sample dependency

Details in Topic 4.4
Posted Data*, TCC-II

- Test averages and StdDev
- Per-cycle parameter averages & StdDev: measured values, cycle-integrated parameters
- Per-crankangle measurements: in-cylinder, runners, & plenum pressures; rpm

- Velocity: - 2-component velocity, 2-D grid
 - PIV measurement plane through valve centers
 - 1.6 & 2.9 mm resolution, simultaneously
 - each 5 ca deg, 70 continuous cycles

- Geometry: GT Power model, geometry (.STL)

Data located on UM server. Contact Volker Sick: vsick@umich.edu
2. SIDI (TU Darmstadt)
TU Darmstadt Measurement-Simulation Efforts

• Scope of Investigations
 – Sub-processes of turbulent-combustion in engines
 – Provide established database for model validation

• Experiment Group
 – TU Darmstadt (A. Dreizler)
 – Data available upon request:
 • Brian Peterson (peterson@csi.tu-darmstadt.de), Benjamin Böhm (bboehm@ekt.tu-darmstadt.de)

• Modeling Groups
 – TU Darmstadt (J. Janicka, S. Jarkirlic)
 – TU Freiberg (C. Hasse)
 – U. Duisburg-Essen (A. Kempf)
 – RWTH Aachen (H. Pitsch)
 – Cambridge (N. Swaminathan)
• **Single-cylinder SIDI engine**
 – 4-valve, pentroof head
 – Bore, Stroke: 86 mm

• **Designed for model validation**

• **Engine Test Bench**
 – Well-characterized BCs
 • Flow, T, P, rel. humidity, EGR, fuel (DI, PFI), λ, spark (V,I)
 – Repeatable, reliable operation and BCs
Optical Engine: Available Cylinder Heads

Wall-guided

- Side mounted injector
- Valves
 - Intake: 33 mm dia.
 - Exhaust: 31 mm dia.
- Clearance Volume: 66.5 cm3
- CR: 8.5

Experimental Setup: Example

8) Peterson et al. 11th Int. Congress Engine Combust. Processes, Ludwigsburg (2013)
9) Baum et al. 16th Int. Symp. Laser Techniques to Fluid Mechanics, Lisbon (2012)
Non-Reacting Flow

• Fundamentals of engine flows
 – Multiple diagnostic approaches
• Comprehensive flow database

High-speed PIV

• Evolution of flow
• Intra-cycle & cyclic flow dynamics

Tomo-, stereo-PIV

• 3D flow
• *All* gradient tensor components
 – Reynolds Stress
 – Anisotropic invariants

High-statistic PIV (up to 2700 cycles)
• Statistical moments of flow
• Convergence
• Conditioned statistics

High Res. PIV (0.4 mm)
• Spatial scales
• Gradients
• Energy spectra

[Image of velocity data and flow dynamics]
Coherence of Measurements

Velocimetry methods (PIV)
- Tomographic, stereoscopic, high-speed, low-speed, high resolution

Data integrity
- Validated, reliable, repeatable

Experimental Comparisons

Ensemble Average Velocity field in Central Axis
Steady-State Flow Bench

• Magnetic Resonance Velocimetry*
 – Water with Gadolinium-based agent
 – Conducted in MRI machine

*Collaboration with Sven Grundmann, Aeronautical Engin. TU Darmstadt

Exp. Fluids (2014) awaiting proofs

Polyamide engine model (1:1 scale)

- Radial flow past valve curtain
- Entire valve periphery
- Velocity recirculation zones
- Charge filling, variations

- 3D intake flow entire domain
- Provides ensemble average

water in
Combustion Characterization

- Flame Propagation
- Mie scattering
 - PDF of enflamed region

- Chemiluminescence
 - Spherical flame growth approximation

- Simultaneous dual-plane OH-LIF & stereoscopic PIV
 - 3D reconstruction of flame surface
 - u, v, w convection velocity
 - 3D local flame speed

2D probability of enflamed region, spark timing 16° bTDC

3D reconstructed flame surface and 3C turbulent flow field

PDF of local 3D flame speed

Peterson et al. ProCI (2014)
3. SGEmac (IFP)
Introduction

• Experimental database for validation and development of LES modeling

• **Objective**: study of cycle-to-cycle variations using LES supported by experiments

• **Uniqueness:**
 • Modern engine geometry
 • Experiments with LES
 • 1D Simulations
Complete geometry available
- 4-valve, pentroof
- Based on Renault F7P

Well characterized BCs
- CA° resolved
- Cycle resolved

Operation
- Homogeneous C₃H₈ / air
- Direct-injection (iso-octane)
- Low CCV operating points
- Large CCV operating points
 - Lean, diluted

System Simulation Support
In-cylinder PIV (100 cycles)
Combustion characterisation

OH-LIF and OH*: Flame kernel structure and location

-12 CAD
-8 CAD
-4 CAD

Chemiluminescence
Reactive zone characterization

1D Analysis

\(P_{\text{cyl}} \) for low and large CCVs

Simultaneous PIF and OH-LIF:
Turbulent flame propagation models

Statistics on combustion (BMF, CA\(_{xx}\), ...)

April 4 & 5, 2014
4. H2ICE (SNL/U DuE)
Sandia H2ICE on the ECN – data and simulation

Acetone PLIF + PIV

Unique measurements
- full bore & stroke
- almost to walls
- quantitative

Laser 532/266 nm

Injector

Exhaust

Intake

Piston

Optical liner

Tumble plate

Intake
Hydrogen DI: a single-phase, fully gaseous, highly underexpanded jet

Experiment
PIV underestimates centerline mean velocity during injection

Simulations:
Shock structure necessitates fine grid near nozzle

\[c_s (H_2, 300 \text{ K}) = 1270 \text{ m/s} \]
Green: On the ECN web page Red: Measured but not on ECN page

- Geometry, boundary conditions, intake, cyl., exhaust pressures
 (valve lifts unintentionally missing on the web)
- Tumble-plane velocity during compression
 - With and without injection
 - For neutral and tumble-enhanced intake
 - In complete cylinder and pent-roof
- Tumble-plane fuel mole-fraction during compression
 - Angled single-hole nozzle, Inj. at IVC
 - Other injectors and injection timings
- Ensemble-means available, single shots missing
- Flame propagation
 - High-speed Schlieren movies in pent-roof
 - Single-cycle correlated pressure traces and AHRR
- Schlieren movies of early jet penetration
Measured, but currently not on the ECN web page

Multiple-cross-plane imaging (in the mean)

Velocity in the pent roof

Early flame propagation
Collaboration between Sandia and Argonne (2009 – 2011)

Turbulence models and tuning

Grid convergence

Multi-hole nozzles
Simulation helped the experiment in fixing mistakes

Numerical

Experimental (N₂)

Fluorescence (ns) + phosphorescence (μs - ms)

(at 300 m/s: 100 μs = 30 mm)

Fluorescence (ns) phosphorescence quenched by O₂

More accurate calibration (corrected for fuel lost into intake in flat-field calibration)
Comparisons of/with different RANS-simulations

Argonne Nat’l lab (R. Scarcelli)
- FLUENT
- All k-ε models found to perform similarly well

SAE 2011-24-0096
SAE 2011-01-0675
SAE 2009-24-0083

Poli. Milano (T. Lucchini)
- OpenFOAM
- Standard and RNG k-ε found to perform best

SAE 2011-24-0036

Convergent Science (J. LeMoine)
- CONVERGE
- RNG k-ε

ASME ICEF2014-5610 (submitted)
Status DI-H2ICE

• Engine and lab still usable but unused at Sandia
• No dedicated support for any further experimental activities
• More of the existing data, e.g., velocity in pent-roof and flame-propagation movies could be put online
• Data may be moved to Duisburg server for better site maintenance

• Victor and Sebastian receive and support 2 - 3 requests / year from researchers starting simulations of this engine
Fuel dispersion in different simulations

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANL (FLUENT)</td>
<td></td>
</tr>
<tr>
<td>Low-tumble case</td>
<td></td>
</tr>
<tr>
<td>P. Milano (OpenFOAM)</td>
<td></td>
</tr>
<tr>
<td>Low-tumble case</td>
<td></td>
</tr>
<tr>
<td>Conv. Science (CONVERGE)</td>
<td>High-tumble case</td>
</tr>
</tbody>
</table>

H$_2$ICE

April 4 & 5, 2014