
Transport limitations on development times of LIGA PMMA resists
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Abstract Analytical and numerical methods are employed
to investigate the role of PMMA fragment transport in re-
sist development for the LIGA process. We demonstrate
that the overall development time can be expressed as the
sum of the kinetic-limited development time and a time for
fragment transport. The kinetic-limited time depends only
on the resist thickness, dose profile and development
temperature and is independent of feature size. The
transport time grows as the square of the resist thickness
and falls inversely with the Sherwood number. A new an-
alytical model describing the Sherwood number for forced
convective transport in deep cavities is also developed. This
model, applicable to both resist development and electro-
forming, is compared with numerical simulations and with
data previously reported. Based on this model, we find that
forced convective transport can significantly reduce
development times only for features having an aspect ratio
less than about five. Acoustic agitation is also discussed,
and sample calculations of the development time are
presented for both forced convective transport and
acoustic agitation over a wide range of feature sizes.

1
Introduction
The LIGA process [1, 2] employs synchrotron X-ray
lithography to expose a thick PMMA resist through a
patterned absorber mask. Such exposure reduces the resist
molecular weight by main-chain scission of the PMMA
below open portions of the absorber [3]. The resulting
fragments of PMMA are dissolved during subsequent
development to produce a (usually) two-dimensional

structure of fixed thickness. This may be used as a finished
plastic part, or may serve as a mold for fabricating an
inverse metal structure via electrodeposition.

This process is capable of producing structures having
feature heights up to several millimeters and feature aspect
ratios of 50 or more. While such structures are possible,
the successful development of exposed resists becomes
difficult and time consuming as both the resist thickness
and feature aspect ratio increase. Development times for a
200 lm resist thickness are typically less than 2 h for all
aspect ratios, but increase to nearly 20 h for high aspect
ratios at a resist thickness of 1 mm. The development of
thick resists is particularly problematic for resists pat-
terned with both large and small features since features of
widely varying size generally develop at widely disparate
rates. The resulting disparities in development times may
lead to a loss of structure accuracy or, in the worst of
cases, to the detachment of small posts or webs due to
lateral dissolution near the PMMA substrate [4].

These development problems arise from limitations on
the development rate imposed by transport processes [5–
7]. Development of exposed PMMA requires the release of
PMMA fragments at the dissolution interface as well as the
transport of these fragments out of each feature and away
from the resist. Either the dissolution kinetics or the
transport rate may thus determine the local development
rate and overall development times.

The transport of fragments along a feature may occur
both by diffusion and by convective motion. Diffusive
transport rates are relatively low due to the high molecular
weights typical of PMMA fragments. Convective transport
rates are usually much larger, even for fluid (developer)
speeds as low as 1 lm/s, but convective motion is difficult
to produce deep in features of high aspect ratio [8]. As a
result, small features of high aspect ratio tend to develop
slowly at a diffusion-limited rate, while larger features,
having low aspect ratios, tend to develop more quickly at
the kinetic-limited rate of PMMA dissolution.

Here we analyze diffusive and convective transport of
PMMA fragments and examine the effect of such transport
on resist development times. Both forced convection and
acoustic agitation are considered. As part of this study, we
develop a new model describing forced convective trans-
port in deep features. This model is applicable to both
circular and rectangular features and is suitable for use at
all aspect ratios. The results of the model are presented
first in the form of the local Sherwood number based on
the instantaneous feature depth. The local Sherwood
number is then integrated over the completed feature
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depth to yield the mean Sherwood number as a function of
the final aspect ratio. Although the focus of this work is
resist development, the transport model and resulting
Sherwood numbers are also applicable to electrodeposi-
tion. Sample calculations of development times for both
forced convection and acoustic agitation are also pre-
sented and discussed.

2
Development times
Consider the development of a single isolated feature
where the dissolution front is advancing into the PMMA.
PMMA fragments are released at the dissolution surface at
a rate that is proportional to the product of the front
speed, U, and the solid density of PMMA, qs ¼ 1.2 g/cm3.
In quasi-steady state, species conservation then requires
that the mass flux of PMMA fragments away from the
dissolution surface just equals the fragment transport rate
between the dissolution front and the open top of the
feature. If we now assume that the kinetic-limited disso-
lution rate, R, is reversible and that this reversible reaction
is first-order in the fragment mass density, c, in the de-
veloper adjacent to the dissolution front, then this equi-
librium between the kinetic dissolution rate and the
fragment transport rate can be expressed as

qsU ¼ Rðqs � cÞ ¼ cShD

y
ð1Þ

where D is the fragment diffusivity in the developer, y is
the instantaneous feature depth and Sh is the Sherwood
number also based on the instantaneous feature depth.
The Sherwood number indicates the magnitude of the
PMMA fragment transport rate relative to that by diffusion
alone. Its value is Sh ¼ 1 for diffusive transport. More
generally, Sherwood numbers for convective transport
must be computed from the multi-dimensional flow field
within the feature.

Eliminating the fragment density, c, between the two
right-hand expressions of Eq. (1), we find that the overall
development rate can be expressed as

U ¼ Rð1 � c�Þ; c� ¼ yR

yR þ ShD
ð2Þ

such that the development rate U is limited by both dis-
solution kinetics and fragment transport. The total devel-
opment time, t, can now be written in terms of the local
development rate

t ¼
Zh

0

dy

U
ð3Þ

where h is the final feature depth or, equivalently, the resist
thickness.

From the form of Eq. (2), we see that the integral above
can be split into two contributions. The first contribution
is that due to the kinetic-limited development rate; the
second is due to the finite rate of fragment transport. As a
result, the total development time can be expressed as the

simple sum of the kinetic-limited development time, t0, and
the characteristic time for transport, dt. That is,

t ¼ t0 þ dt; t0 ¼
Zh

0

dy

R
and dt ¼

Zh

0

y dy

DSh
ð4Þ

The last of these expressions can also be written in terms
of an average Sherwood number, Sh.

dt ¼ h2

2DSh
;

1

Sh
¼ 2

h2

Zh

0

y dy

Sh
¼ 2

A2
f

ZAf

0

A dA

Sh
ð5Þ

Again, Sh is the instantaneous Sherwood number. Its value
thus depends on the instantaneous depth, y, through its
dependence on the aspect ratio, which increases continu-
ously through the course of development. To compute the
integral yielding dt or Sh, it is therefore useful to make the
substitution y ¼ hA/Af where A is the instantaneous aspect
ratio and Af is the aspect ratio upon complete development
of the feature. This substitution yields the second form of
the integral. Note that Sh ¼ Sh if the value of the Sherwood
number is independent of the aspect ratio. This occurs in
the important special case of Sh ¼ 1, corresponding to
diffusion-limited transport.

The kinetic-limited development rate depends only on
the dose and development temperature, so t0 in Eq. (4) is
independent of both the feature size and aspect ratio
provided that secondary radiation is negligible. As such,
the difference in development times for two features of
differing size on the same resist is given by

Dt1;2 ¼ t1 � t2 ¼ dt1 � dt2 ¼
h2

2D

1

Sh1

� 1

Sh2

� �
ð6Þ

Note that this result is (nearly) independent of the ab-
sorbed dose and depends only weakly on the developer
temperature through the fragment diffusivity. It does,
however, depend strongly on any developer motion within
the feature through the two Sherwood numbers. Also note
that the maximum possible differential in development
times is Dt1,2 ¼ h2/2D based on the disparity between the
extremes of diffusion-limited development ðSh1 ¼ 1Þ and
kinetic-limited development ðSh2 ! 1Þ.

3
Forced convective transport
Sherwood numbers are determined by analyzing the spa-
tial distribution of PMMA fragments resulting from the
flow field inside and outside the feature. Here we examine
the case of forced convective transport. Such transport
arises when the developer outside a feature is driven by
stirring or by moving the resist in a quiescent bath. It also
arises in some schemes intended to reduce development
(or plating) times by increasing the Sherwood number.
These include paddle cells, flow-through cells and schemes
based on the flow induced by a rotating disk.

Forced convection over the top of a feature produces a
series of counter-rotating cells along the feature height.
Each cell occupies the full feature width, but only a fraction
of the feature height. The number of cells formed depends
on the feature aspect ratio and a limiting aspect ratio for
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each cell. Several previous studies have demonstrated that
the cell aspect ratio generally does not exceed about 1.4 [8–
10]. Thus features having aspect ratios below about 1.4 will
contain a single cell. Features having aspect ratios between
about 1.4 and about 2.8 will exhibit two cells, and so on.

Near the top and bottom of each of these cells, there
exists a roughly horizontal line along which the vertical
component of the fluid velocity vanishes. This is the
streamline dividing adjacent cells. All species transport
across this line must occur by diffusion alone, giving rise
to boundary layers in the spatial distribution of the frag-
ment concentration. Such boundary layers are located
between each pair of adjacent cells and at the top and
bottom of a feature. The number of cells, Nc, and number
of boundary layers, Nb, can thus be expressed as

Nc ¼
A

1:4

� �
and Nb ¼ Nc þ 1 ð7Þ

where again A is the instantaneous feature aspect ratio.
The number of cells is obtained by rounding the ratio
A/1.4 upward to the nearest integer, as indicated by the
floor brackets.

Each of these boundary layers represents a resistance to
fragment transport upward along the feature, and the
magnitude of the resistance is the inverse of the Sherwood
number. As these resistances appear in series, the overall
resistance is obtained by a simple sum analogous to that of
electrical resistors. For transport, this overall resistance
can be expressed in terms of the overall Sherwood number,
Sh, based on the feature depth.

1

Sh
¼ 1

Nb

XNb

i¼1

1

Shi
ð8Þ

where Shi is the local Sherwood number associated with
each boundary layer. The convective portion of the local
Sherwood number, Shi ) 1, can be expressed in a similar
manner as an overall resistance due to the series resis-
tances in the low and high Peclet number limits. That is,

1

Shi � 1
¼ 1

Shi;0 � 1
þ 1

Shi;1 � 1
ð9Þ

where Shi,0 is the Sherwood number in the low Peclet
number regime, and Shi,1 is that in the high Peclet number
limit. Note that the form of Eqs. (8) and (9) takes into
account that a boundary layer thickness cannot exceed the
adjacent cell height, ensuring a minimum possible Sher-
wood number of unity for each cell and for the feature.

The Peclet number, Pe, is the product of the Reynolds
and Schmidt numbers. Schmidt numbers for ions in an
aqueous solution are usually on the order of 103, while
those for fragments in developer are order 105. Thus the
Reynolds number must always be small at low Peclet
numbers for the problems of interest here. In this case, the
Sherwood number for most geometries grows in propor-
tion to the square of the Peclet number [11]. At high Peclet
numbers, things are bit more complicated. If the Reynolds
number is small, the Sherwood number again grows in
proportion to some power of the Peclet number, and this

power depends mostly on the nature of the boundary layer.
Fluid–solid boundary layers tend to exhibit a one-third
power; fluid–fluid layers usually exhibit a one-half power
[11, 12]. At higher Reynolds numbers, the Sherwood
number no longer depends strictly on the Peclet number,
but instead grows in proportion to some power of the
Reynolds number and in proportion to the third-root of the
Schmidt number [11, 12]. Here we assume, for the sake of
simplicity, that all high Peclet number transport occurs at
low Reynolds numbers and that fluid–fluid boundaries are
predominant. Under these conditions, the local Sherwood
numbers at low and high Peclet numbers can be written as

Shi;0 � 1 ¼ aPe2
i and Shi;1 � 1 ¼ bPe

1=2
i ð10Þ

where Pei is the local Peclet number associated with the ith
boundary layer. This Peclet number is based on the local
characteristic fluid speed and the hydraulic diameter of the
feature where the hydraulic diameter is four times the
cross-section area divided by the wetted perimeter. The
hydraulic diameter of a circular feature is thus the feature
diameter, dH ¼ d; that of a wide channel is twice the
channel width, dH ¼ 2w. Based on these definitions, the
local Peclet number is given by

Pei ¼
uidH

D
¼ uid

D
¼ 2uiw

D
ð11Þ

The overall characteristic fluid speed for flow across a
feature is the product of the feature width, w or d, and
the shear rate, c, at the top surface just upstream of the
feature. That is,

uref ¼ cd ¼ cw; c ¼ ou

oy
at y ¼ 0 ð12Þ

Based on previous finite-difference numerical results
[9, 10], the characteristic speed at the top boundary layer
(i ¼ 1) is about 10% of the reference speed, uref. For each
subsequent boundary layer (i > 1), the characteristic
speed drops by very nearly two orders-of-magnitude.
Thus, the local Peclet number at the ith boundary layer can
be expressed as

Pei ¼ Pece�2:3ð2i�1Þ; Pec ¼
cd2

D
¼ 2cw2

D
ð13Þ

These two definitions of the Peclet number apply to
circular and rectangular features, respectively.

The shear rate c appearing in the Peclet number above
is readily calculated for a variety of conditions. For
streaming flow across a flat plate, the well-known result is
[12]

c ¼ 0:33

ffiffiffiffiffi
u3

mL

r
ð14Þ

where u is the free-stream fluid speed, m is the fluid vis-
cosity and L is the position downstream of the leading
edge. For low Reynolds number, fully-developed flow
between parallel plates, the shear rate along either plate
is given by

c ¼ 8u

W
ð15Þ
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where u is the mean fluid speed, and W is the distance
between the two plates. Lastly, the shear rate on a rotating
disk is given by [12]

c ¼ 0:80

ffiffiffiffiffiffiffiffiffiffi
r2x3

m

r
ð16Þ

where r is the radial position, and x is the angular speed of
rotation.

This analytical model describing the Sherwood number
contains just two unknown parameters, a and b appearing
Eq. (10). To obtain values for these, we have fit the model
to the results of numerical simulations of forced convec-
tive transport in which the shear rate is specified at the top
surface upstream of a rectangular feature [10]. The flow is
directed across the narrow dimension such that the
problem is two-dimensional. The best-fit values obtained
for aspect ratios of one and two are a ¼ 0.03 and b ¼ 0.25.

A comparison between the Sherwood numbers com-
puted numerically and those given by the analytical model
is shown in Fig. 1. Here we see that this simple analytical
model closely reproduces a complex dependence of the
Sherwood number on the Peclet number and aspect ratio.
For an aspect ratio of A ¼ 1, the Sherwood number rises
smoothly from Sh ¼ 1 and eventually grows as the square-
root of the Peclet number as the Peclet number becomes
large. We see a very different, wavy behavior at an aspect
ratio of A ¼ 2. In this case, the Sherwood number rises
somewhat abruptly from about 1.3 to about 2 between
Pec ¼ 103 and 104. Then, between Pec ¼ 104 and 105, it
remains relatively constant on an inclined plateau. Finally,
the Sherwood number again increases as the Peclet num-
ber exceeds 105. Similar behavior also occurs at higher
aspect ratios, with the number of plateaus growing in
proportion to the number of cells.

To benchmark this model, we have also compared its
results with Sherwood numbers previously measured in
the context of the electrodeposition [13]. These experi-
ments were performed using circular features located at a
fixed radial position of r ¼ 3 mm on a rotating disk. The

rotational speed was varied up to 1000 rpm. Feature
diameters varied from 10 to 200 lm; depths ranged for
100–350 lm, yielding aspect ratios between 0.5 and 20.
The Sherwood numbers measured in this study were re-
ported as a function of a Reynolds number, Rex , based on
the angular speed, radial position on the disk and the
feature size. This Reynolds number can be converted to
the Peclet number used here via Eq. (16). The result is

Pec ¼
cd2

D
¼ 0:80

ffiffiffi
d

r

r
Re3=2

x Sc; Rex ¼ rxd

m
ð17Þ

The Schmidt number used in the conversion is
Sc ¼ m/D ¼ 1400 based on m ¼ 1.1 · 10)6 m2/s and
D ¼ 0.8 · 10)9 m2/s.

The results of this comparison are shown in Fig. 2.
Symbols represent the data; the curves represent results of
the analytical model. The solid symbols are for aspect
ratios of A ¼ 1, 2, 4, 7 and 20, corresponding to the five-
labeled curves. All data for A ¼ 20 lie below Pec ¼ 103. The
open symbols are for aspect ratios of 0.5 and 1.7. Note that
the analytical results in Figs. 1 and 2 are identical; that is,
the two parameters a ¼ 0.03 and b ¼ 0.25 are the same in
each case. The agreement between the model and data is
exceptionally good considering that the model was not fit
to this data in any way. The largest relative error between
the measured and calculated Sherwood numbers is less
than 20% for the aspect ratios of 1, 2, 4, 7 and 20.

The data in Fig. 2 also seem to confirm several as-
sumptions implicit in the model. First, there appears to
be little difference between the Sherwood numbers at
aspect ratios of 0.5 and 1 (both Nc ¼ 1). Similarly, the
measured values for A ¼ 1.7 are close to those for A ¼ 2
(both Nc ¼ 2), at least up to Peclet numbers of about 105.
These two observations tend to support the notion that
the number of cells and boundary layers is more im-
portant than the aspect ratio in determining the Sher-
wood number. Second, the Sherwood numbers measured
at A ¼ 1 employed feature diameters of both 100 and
200 lm; those for A ¼ 2 used features of both 50 and

Fig. 1. Analytical model of Sherwood number as a function of the
Peclet number and aspect ratio. Symbols represent Sherwood
numbers computed numerically

Fig. 2. Comparison of analytical model with measured values of
the Sherwood number for circular features on a rotating disk.
Open symbols represent A ¼ 0.5 and 1.7
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100 lm. In the original paper, the Sherwood number was
plotted relative to the Reynolds Number, Rex , and the
effect of the feature size was clearly evident. In Fig. 2,
however, no such effect is seen. This supports the notion
that the Peclet number, Pec , which varies as the square
of the feature size, is indeed the appropriate parameter
governing the Sherwood number. Finally, we see in Fig. 2
a tendency for the model to under-predict the measured
Sherwood numbers when the Peclet number is very large.
Recall that the high Peclet number correlation used in
Eq. (10) applies to high Peclet numbers only when the
Reynolds number is small. Thus the assumption of a
small Reynolds number seems appropriate for most
conditions of practical interest. This assumption will
break down, however, for Reynolds numbers much above
one. The corresponding Peclet number is about 103 for
electrodeposition (Sc 	 103) and about 105 for develop-
ment (Sc 	 105).

We note that the Sherwood number for forced con-
vection is strongly dependent on the number of cells, so
the aspect ratio and Peclet number may not uniquely
determine its value. There is always some uncertainty in
the number of cells that will result for a given aspect ratio,
and this uncertainty grows for aspect ratios near multiples
of 1.4. Near these values, the flow field may not even be
unique. In addition, weak secondary influences such as
buoyancy may alter the cell structure to give more or fewer
cells for a given feature geometry [10]. The number of cells
may also be influenced by initial conditions or by the
geometry surrounding a feature. This uncertainty in the
number of cells gives rise to uncertainty in the Sherwood
number. Sherwood numbers may thus change abruptly
with small changes in the aspect ratio or may even have
multiple values for a single geometry. Such unpredictable
behavior should be most apparent at aspect ratios below
about five since an increase or decrease of one cell rep-
resents a larger relative uncertainty in the cell count when
the number of cells is small.

Finally, we note that the correlation above should apply
to both circular and rectangular features (holes and
trenches) if the Peclet number is based on the hydraulic
diameter. For rectangular features, however, these results
apply only to cases in which the external flow directly
crosses the smaller dimension. This analysis is simply not
applicable to wide rectangular features for cases in which
there is significant external flow parallel to the longer
dimension.

4
Sonic agitation
Unlike forced convective transport, acoustic agitation
produces a pair of counter-rotating cells that each occu-
pies half of the feature width but span the full feature
height. Boundary layers thus arise only at the top and
bottom of the feature. Further, the characteristic fluid
speeds at the top and bottom boundary layers are the
same, so each boundary layer offers substantially the same
resistance to species transport. Because of this, the overall
Sherwood number can be expressed in terms of just the
high and low Peclet number behaviors. That is,

1

Sh � 1
¼ 1

Sh0 � 1
þ 1

Sh1 � 1
ð18Þ

Sh0 � 1 ¼ 0:022Pe2
a and Sh1 � 1 ¼ 2:4APe1=3

a

ð19Þ
The Peclet number for sonic agitation is based on the
characteristic acoustic velocity and the feature width. This
can be written as

Pea ¼ Iw

10qc2D
ð20Þ

where I is the acoustic intensity, q 	 103 kg/m3 is the fluid
density and c 	 1500 m/s is the speed of sound in the
fluid. This model for acoustic agitation was reported and
compared with experimental results in a previous
study [14].

5
Mean Sherwood numbers
Here we are interested in the mean Sherwood number and
how its value affects development times for features of
various size, but all located on a single substrate. The resist
thickness is fixed in the LIGA process, so variations in final
aspect ratio are equivalent to variations in feature size.
Since the Sherwood number depends on the feature size
through the Peclet number, a variation in feature size re-
quires a change in either the shear rate, c, or the acoustic
intensity, I, to maintain a fixed Peclet number. This is in
conflict, however, with the notion of a single substrate
because the shear rate or acoustic intensity is uniform over
all features, at least for features located near one another.
As a result, a fixed Peclet number does not correctly rep-
resent the case in which features of various aspect ratio
reside on a single substrate.

To address this properly, we need to consider that the
Peclet number is proportional to the square of the feature
size for forced convection and varies linearly with feature
size for acoustic agitation. As a result, the product of the
aspect ratio and the Peclet number Af

2 Pec is fixed for
forced convection when both the shear rate and resist
thickness are constant. The term Af Pea plays a similar role
for acoustic agitation; a fixed value of this product corre-
sponds to a fixed intensity and fixed resist thickness. Thus
by specifying both the aspect ratio and either Af

2 Pec or
Af Pea, the Peclet number appropriate for features on a
common substrate is also determined. For each aspect
ratio, this Peclet number can then be used to compute the
mean Sherwood number via Eq. (5). Here, the required
integral is evaluated using a numerical quadrature routine.
This numerical approach is needed for the equations
governing forced convection, though the integral can also
be obtained analytically for the simpler equations gov-
erning acoustic agitation.

Figure 3 shows mean Sherwood numbers for forced
convection as a function of the feature aspect ratio for
several values of Af

2 Pec. The values shown were selected
to span the range of conditions of interest for LIGA
development. For example, Af

2 Pec ¼ 108 corresponds to
c ¼ 1000 for a diffusivity of D ¼ 10)11 m2/s and resist
thickness of h ¼ 1 mm. By Eq. (14), this shear rate at a
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distance L ¼ 50 mm from the leading edge of the substrate
requires a free-stream developer speed of about
u ¼ 0.8 m/s based on a viscosity of m ¼ 10)6 m2/s. This is
quite high, though not unrealistic. For flow between two
plates spaced at W ¼ 10 mm and the same properties and
resist thickness, the required mean fluid speed is
u ¼ 1.2 m/s. Similarly, for features located on a rotating
disk at r ¼ 50 mm, the required speed of rotation to
obtain c ¼ 1000 is about 80 rpm. Again, this is fairly high,

though not unreasonable. Thus the value Af
2 Pec ¼ 109

shown in Fig. 4 will be difficult to obtain, and the high
speeds required are likely to damage free-standing features
near the end of the development period. Note that the
wavy character of these curves represents the same wavi-
ness seen early in Figs. 1 and 2. The kinks arise at aspect
ratios that are integer multiples of 1.4, the presumed
maximum aspect ratio of fluid cells within a feature.

We see in Fig. 3 that the mean Sherwood number falls
very rapidly with increasing aspect ratio. Even for
Af

2 Pec ¼ 109, the Sherwood number exceeds 10 only for
aspect ratios up to about three. It falls to Sh 
 4 at an
aspect ratio of five and is less than two for aspect ratios
greater than 10.

Figure 4 shows computed mean Sherwood numbers
for acoustic agitation as a function of the aspect ratio.
Here the value of Af Pea is fixed, and again the values
shown were selected to span the parameter range of in-
terest. Based on a resist thickness of h ¼ 1 mm and a
diffusivity of D ¼ 10)11 m2/s, these values correspond to
acoustic intensities of I ¼ 2.2, 4.5, 9 and 18 W/cm2. Here
we see that mean Sherwood numbers for acoustic agita-
tion exhibit a maximum at some finite aspect ratio and
that the aspect ratio yielding the maximum increases
about linearly with increasing Af Pea. We also see that the
Sherwood numbers are very sensitive to Af Pea over the
full range of aspect ratios. This is in contrast to the re-
sults for forced convection. Finally, we see that the mean
Sherwood numbers can be very large even at large aspect

ratios, provided that the acoustic intensity is sufficiently
high.

6
Sample calculations
To illustrate the impact of transport on the development
process, we have made some sample calculations of overall
development times under conditions of both forced
convection and acoustic agitation. These simulations are
based on exposures performed at SSRL (kc ¼ 2.66 Å) using
a 100 lm silicon mask membrane, a fixed bottom-surface
dose of 5.2 kJ/cm3, GG developer, a development tempera-
ture of 25 �C, and a fixed fragment diffusivity of 10)11 m2/s.
The kinetic-limited development rate is taken as

R ¼ G
ðQ=BÞC

1 þ ðQ=BÞC e�
Ea
R

1
T� 1

Trð Þ; Ea ¼ a
1 þ ðQ=bÞj ð21Þ

and Q is the local absorbed dose; Tr ¼ 308 K (35 �C) is a
reference temperature, and R ¼ 8.314 J/mol is the ideal gas
constant. Parameters for the development rate are
G ¼ 14 lm/min, B ¼ 4.7 kJ/cm3, and C ¼ 3.8; those for
the activation energy are a ¼ 140 kJ/mol, b ¼ 8.3 kJ/cm3,
and j ¼ 2.4 [15]. This expression yields kinetic-limited
development rates that are just slightly below measured
rates previously reported [16].

Results for forced convection are shown in Fig. 5 as a
function of the PMMA thickness for various feature sizes.
The results are obtained by integrating the development
front location forward in time, using the local absorbed dose
and local Sherwood number to compute the instantaneous
development speed. The integration is continued until the
dissolution front reaches the substrate, yielding the total
development time. In all cases, transport within the features
is driven by a streaming flow over the resist. The speed is
taken as u ¼ 1 m/s, and the features are assumed to be
located at L ¼ 50 mm from the leading edge. By Eq. (14),
these yield c ¼ 1480 s)1 for a viscosity of 10)6 m2/s.

Fig. 3. Mean Sherwood numbers fall rapidly with increasing as-
pect ratio even when Peclet numbers are very large. The product
Af

2 Pec depends on the resist thickness, but is independent of
feature size

Fig. 4. Mean Sherwood numbers for acoustic agitation may
remain large even for aspect ratios of 25 at sufficient acoustic
intensities. The product Af Pe is independent of feature size
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Here we see that the development time for very small
features (d 	 0) is controlled by diffusion, while those for
very large features (d � h) are controlled by the kinetics
of dissolution. These diffusion-limited and kinetic-limited
values are shown by the two solid curves. Note that the
kinetic-limited development times do not increase linearly
with the resist thickness because the bottom dose is fixed
and the top dose thus increases with increasing thickness.
As expected, the disparity in development times between
these two limits grows precisely in proportion to the
square of the PMMA thickness. Development times are
thus similar for all aspect ratios when the resist thickness
is small, less than about 200 lm. As the thickness in-
creases, however, the diffusion-limited and kinetic-limited
development times rapidly diverge. Forced convection
reduces development times to roughly the kinetic-limited
values only for aspect ratios up to about one, and signif-
icant reductions in the development time are obtained
only for aspect ratios less than three or four. For aspect
ratios above 10, forced convection provides little benefit in
reducing development times. Note that the results in Fig. 5
are consistent with the previous discussion of the mean
Sherwood number. For example, the condition c ¼
1480 s)1 used in Fig. 5 gives Af

2 Pec ¼ 1.5 · 108 for a resist
thickness of h ¼ 1 mm and diffusivity D ¼ 10)11 m2/s. A
feature size of 200 lm at this thickness yields Af ¼ 5, and
Fig. 3 gives Sh 
 3 for these values. Thus the development
time should lie about one-third of the way between the
kinetic-limited and diffusion-limited times, as shown in
Fig. 5.

Development times for acoustic agitation are shown in
Fig. 6. These results are based on an acoustic intensity of
I 	 10 W/cm2. Again the bottom dose is always 5.2 kJ/cm3.

For acoustic agitation, we see that development times are
reduced to nearly the kinetic-limited values for all feature
sizes greater than about 50 lm, and this is nearly inde-
pendent of the resist thickness. Such behavior is consistent
with the previous discussion of mean Sherwood numbers.
At a resist thickness of h ¼ 1 mm, a feature size of 50 lm
corresponds to an aspect ratio of 20 and an acoustic in-
tensity of 10 W/cm2 corresponds to Af Pea ¼ 440. For these
conditions, the mean Sherwood number given in Fig. 4 is
just over 10. Thus the development time should be near the
kinetic-limited value. For a feature size of 20 lm, however,
the aspect ratio is Af ¼ 50 at h ¼ 1 mm. In this case, the
mean Sherwood number is only about 2.4 for the same
intensity, so the development time should lie about halfway
between the kinetic-limited and diffusion-limited times.
This is also consistent with the results in Fig. 6.

7
Summary
For a first-order reaction governing dissolution kinetics,
we find that the required overall development time for
LIGA resists can be expressed as the sum of a kinetic-
limited development time and a characteristic time for
PMMA fragment transport. The kinetic-limited time
depends only on the resist thickness, dose profile and
development temperature. It is independent of feature size
and aspect ratio when secondary radiation is neglected.
The transport time varies with the square of the resist
thickness and inversely with the PMMA fragment diffu-
sivity and the mean Sherwood number. This transport
time depends on the dose and development temperature
only through their respective influences on the fragment
diffusivity.

Fig. 5. Development times for forced convection over PMMA
surface. Time differential between small and large features grows
large when the resist thickness is large and aspect ratios exceed
about four

Fig. 6. Development times under acoustic agitation. Develop-
ment times and time differentials are dramatically reduced for all
aspect ratios when feature sizes are above about 20 lm
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To compute these transport times, a new analytical
model was developed to describe Sherwood numbers for
features of high aspect ratio. We show that local Sherwood
numbers for forced convective transport can be expressed
in terms the instantaneous aspect ratio and a Peclet
number based on the square of the feature size and the
fluid shear rate just outside the feature. The Sherwood
number does not vary with the aspect ratio, however, but
depends instead only on the number of re-circulating cells
spanning the feature depth. The number of cells is roughly
the aspect ratio divided by 1.4 and rounded up to the
nearest integer. Results of this model are in good agree-
ment with measured Sherwood numbers for features
located on a rotating disk.

We find that local Sherwood numbers do not increase
smoothly with the Peclet number, except for aspect ratios
less than about 1.4. Rather, they exhibit a series of rela-
tively abrupt increases followed by plateaus. Each plateau
spans about two orders of magnitude in the Peclet num-
ber. Local Sherwood numbers are also quite small when
the aspect ratio is large. For aspect ratios above four, the
Sherwood number does not exceed two for Peclet numbers
up to 105.

Feature aspect ratios vary continuously during the
course of development, so local Sherwood numbers cannot
accurately describe the effects of transport on overall de-
velopment times. To avoid this, we define a mean Sher-
wood number based on the final aspect ratio; this mean
value can be used directly in estimating the impact of
transport on development times. Mean Sherwood numbers
are presented as a function of the final aspect ratio for both
forced convective transport and acoustic agitation. We
find that the mean Sherwood number for forced convective
transport is less than three for conditions of practical
interest at all aspect ratios above five; it is less than two for
aspect ratios above 10. Based on this, we conclude that
forced convective transport will provide only very modest
benefit in reducing development times or in improving
uniformity of development times across features of
differing size for aspect ratios above about five. For aspect
ratios of 10 or more, the benefit is negligible. The benefit of
forced convective transport will be even smaller for
electrodeposition since high Peclet numbers are more
difficult to obtain in this case. This is because the Schmidt
number for metal ions in aqueous solution is about three
orders of magnitude lower than that for PMMA fragments
in developer. However, forced convective transport may
still be of value in electrodeposition for LIGA mask
fabrication since feature aspect ratios on masks are usually
small.

In contrast, acoustic agitation under practical condi-
tions can provide mean Sherwood numbers in excess of 10
for aspect ratios up to about 20. Such large values can
dramatically reduce development times and should pro-
vide good uniformity over a range of feature sizes by

largely eliminating the transport limitation on develop-
ment time.
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