
Fast Triangle Counting through Wedge Sampling∗

C. Seshadhri, Ali Pinar, and Tamara G. Kolda
Sandia National Laboratories
Livermore, California 94551

{scomand,apinar,tgkolda}@sandia.gov

ABSTRACT
Graphs and networks are used to model interactions in a va-
riety of contexts, and there is a growing need to be able to
quickly assess the qualities of a graph in order to understand
its underlying structure. Some of the most useful metrics are
triangle based and give a measure of the connectedness of
“friends of friends.” Counting the number of triangles in a
graph has, therefore, received considerable attention in re-
cent years. We propose new sampling-based methods for
counting the number of triangles or the number of trian-
gles with vertices of specified degree in an undirected graph
and for counting the number of each type of directed tri-
angle in a directed graph. The number of samples depends
only on the desired relative accuracy and not on the size
of the graph. We present extensive numerical results show-
ing that our methods are often much better than the error
bounds would suggest. In the undirected case, our method
is generally superior to other approximation approaches; in
the undirected case, ours is the first approximation method
proposed.

Keywords
triangle counting, directed triangle counting, clustering co-
efficient, Hoeffding’s inequality

1. INTRODUCTION
Over the last decade, graphs and networks have emerged

as the standard for modeling interactions between entities
in a wide variety of applications. Graphs are used to model
infrastructure networks, the world wide web, computer traf-
fic, molecular interactions, ecological systems, epidemics,
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co-authors, citations, and social interactions, among others.
Despite the differences in the motivating applications, some
topological structures have emerged to be important across
all these domains. The most prevalent, and arguably the
most important, of these topological structures is the trian-
gle (3-clique). Many networks, especially social networks,
are known to have an abundance of triangles, which can be
explained by homophily (people become friends with those
similar to themselves) and transitivity (friends of friends be-
come friends). This abundance of triangles, along with the
information they reveal, motivates metrics such as clustering
coefficient and the transitivity ratio [28].

We show that the total number of triangles t, can be esti-
mated by sampling a fixed number of wedges and checking
if they are closed. A wedge is simply a length-2 path, and a
triangle is a length-3 cycle. We let p be the total number of
wedges. We can create an estimate t̂ such that

Pr
{
|t− t̂| ≤ εp/3

}
≤ δ.

In Tab. 1, we show how many samples are needed to esti-
mate the total number of triangles, t, within an accuracy
of εp/3, i.e., the proportion of 1/3 of the total wedges, at
99.9% confidence (δ = 0.001). The size of the sample is
independent of the size of the graph, although each sample
requires the expense of checking existence of an edge. Not
only is our proposed method extremely efficient, but it also
has easy-to-compute error bounds.

Accuracy (ε) 0.10 0.05 0.01 0.05 0.001
Samples 380 1,520 38,005 152,018 3,800,451

Table 1: Number of sampled wedges required for various
accuracies at 99.9% confidence.

Our contributions enable fast computation of triangles
and related metrics in both undirected and directed graphs.
Specifically, we present
• a new sampling-based approach for undirected graphs

for estimating the number of triangles and the
clustering coefficient;
• a new sampling-based approach for undirected graphs

for quickly estimating the number of triangles
having at least one node of degree d (or, more
generally, at least one nodes in a set D), as well as the
degree-wise clustering coefficients;
• a new sampling-based approach for directed graphs for

estimating counts of directed triangles;
• precise error bounds based on known quantities

for all the of the above estimates; and
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• extensive numerical results confirming the accuracy
of our method and the bounds as well as comparisons
to other approaches.

We show that our sampling-based approach for counting tri-
angles is more accurate and at least as fast as competing ap-
proximation approaches. To the best of our knowledge, ours
is the first approximation approach in the regime of directed
graphs.

Given an estimate of the number of triangles for directed
or undirected graphs, we can compute metrics that are of use
in a variety of contexts. The clustering coefficient measures
how tightly the neighbors of a vertex are connected amongst
themselves. At the global level, this property is an indicator
of how tightly the communities of the graph are connected
and may help to predict the behavior of individuals in the
network. For instance, Coleman [11] and Portes [20] use the
clustering coefficient to predict to likelihood of going against
social norms. Burt, on the other hand, underlined the im-
portance of nodes that can serve as a bridge between vari-
ous communities [7] and tied this observation to the number
of open triangles in a vertex [8]. Welles et al. studied the
variance of clustering coefficients for different demographics
groups and found that adolescents are more likely to have
connected friends than adults and are even more likely to
terminate connections with friends that are not connected
to their other friends [15].

Triangles have also been used in graph mining applications
such as spam detection [3]. Eckman and Moses [14] inter-
preted the clustering coefficients as a curvature and showed
that connected regions of high curvature on the WWW char-
acterized common topics.

Directed triangles are important motifs for comparing and
characterizing graphs [18, 19, 12, 21, 5]. For graph databases,
exploiting frequent patterns have also been proposed for ef-
ficient query processing [24, 29].

In our earlier work, we have used distribution of degree-
wise clustering coefficients as the driving force for a new
generative model, Blocked Two-Level Erdös-Rényi [23]. In
this work, we have not only looked at the clustering coeffi-
cient, but also how the clustering coefficients related to the
degree distribution, which motivates our algorithms in §4.

1.1 Sketch of Results
We present an extremely efficient sampling technique for

estimating the number of triangles and clustering coefficient.
Recall that the clustering coefficient of an undirected graph
G = (V,E) is given by

c =
3t

p
≡ 3× total number of triangles

total number of wedges
. (1)

In Fig. 1, for example, 5 - 4 - 6 and 3 - 4 - 5 are two
wedges centered at 4 . We say a wedge is closed if it is part
of a triangle; otherwise, we say the wedge is open. Thus, 5 -
4 - 6 is an open wedge, while 3 - 4 - 5 is a closed wedge.

We can interpret c as the probability that a random wedge
is closed.

Suppose we pick a sequence of j = 1, . . . , k random wedges;
let Xj be a random variable associated with the jth random
wedge such that Xj = 1 if the wedge is closed and Xj = 0

if it is open. Define X̄ = 1
k

∑k
j=1Xj . It is easy to see that

c = E[X̄].

We show that c can be estimated to very high accuracy by

Figure 1: Example graph with 12 wedges and 1 triangle.

sampling a constant number of wedges and checking if they
are closed. Specifically, we prove

Pr
{
|X̄ − c| ≥ ε

}
≤ δ

using k = d0.5 ε−2 ln(2/δ)e samples. Note that the number
of samples does not depend on the size of the graph. For
instance, it requires fewer than 2,000 samples to have an
absolute error of 0.05 with 99.9% confidence; fewer than
40,000 samples is needed for an absolute error of 0.01 at
99.9% confidence.

This translates directly to an estimate of the number of
triangles, i.e., if we define t̂ = X̄p/3, then

Pr
{
|t̂− t| ≥ εp/3

}
≤ δ.

Hence, we can bound the error in our estimate of the number
triangles as a fraction ε of the total number of wedges with
confidence given by δ.

Through extensive numerical studies, we show that our
proposed algorithm is much faster than direct enumeration
and has less variance (and tighter bounds) than previously
proposed approximation approaches.

We also extend this basic premise to computing the degree-
wise clustering coefficients and triangles as well as counting
directed triangles in a directed graph.

1.2 Related Work
The enumeration algorithms for finding triangles are ei-

ther the node- or edge-centric. The node-centric algorithm
iterates over all nodes and, for each node v, checks all pairs
among the neighbors of v for being connected. The edge-
centric algorithm, on the other hand, goes over all edges
(u, v) and seeks common neighbors of u and v. Chiba and
Nishizeki [9] proposed a node-centric algorithm that orders
the vertices by degree and processes each edge only once,
by its lower degree vertex. They showed that this algo-
rithm runs in O(mα(G))-time, where m is the number of
edges, and α(G)is the arboricity of the graph G (arboricity
is defined as the minimum number of forests into which its
edges can be partitioned and can be considered as a mea-
sure of how dense the graph is). Schank and Wagner [22]
used the same idea for their forward algorithm. Cohen [10]
and Suri and Vassilvitskii [25] independently proposed the
same idea. Latapy proved that the forward algorithm runs
in O(m3/2)-time and proposed improvements that reduce
the search space [17]. Latapy also showed that the runtime

of this algorithm becomes O(mn1/α) for graphs with power-
law degree distributions, where α is the power-law coefficient
and n is the number of vertices [17]. More recently, Berry
et al. improved this bound to O(m) when the power-law
coefficient is at least 7/3 [4].

To cope with the ever increasing data sizes, streaming
algorithms have been proposed to count the number of tri-



angles [2, 3, 13, 6]. The work by Buriol et al. [6] is particu-
larly important for this paper since their sampling strategy
is similar to what we use for estimating undirected triangles.
Despite the similar sampling approach, the error and con-
fidence bounds in two studies are different and their work
focuses only on the number of triangles, where we extend
this sampling approach to directed triangles and distribu-
tion of triangles.

Another sampling-based approach was proposed by Tsou-
rakakis et al. [27]. Their algorithm, Doulion, reduces the
size of the graph by randomly sparsifying the graph. Specif-
ically, a smaller graph is constructed by keeping each edge
in the original graph with a given probability ρ. Then the
number of triangles in the original graph is estimated by
multiplying the number of triangles of the small graph by
ρ3. The error bounds of this algorithm rely on two param-
eters that we cannot know in advance. The first parameter
is the number of triangles, which is what we are trying to
compute, hence the algorithm offers little guidance about
the quality of an estimation or what would be a good ρ to
use to a desired error and confidence bound. The other is
the number of pairs of triangles that share an edge, which
points to a particular weakness of this algorithm. Consider
the graph in Fig. 2; the edge between vertices u and v will be
dropped with probability 1−ρ removing all 4 triangles from
the graph. In practice, this causes large variations in pre-
dictions. We compare against this method in our numerical
results.

Tsourakakis [26] and Avron [1] used the spectral proper-
ties of the adjacency matrices of the graphs to approximate
the number of triangles; specifically, the number of trian-
gles, t, is equal to t = 1

6

∑n
i=1 λ

3
i where the λi’s are the

eigenvalues of the adjacency matrix. It may be possible to
estimate a few of the largest eigenvalues in order to give
an approximation to t. Finally, Suri and Vassilvitskii pro-
posed a MapReduce implementation for exact counting of
triangles [25].

Figure 2: Drawback of edge sampling to construct a smaller
graph: Omission of edge (u, v) eliminates ten potential tri-
angles because it is shared.

2. PRELIMINARIES
Our results derive from the following well-known result

by Hoeffding on the accuracy of estimating the mean from
a few random samples. We make no assumptions on the
distribution of the random variables.

Theorem 1 (Hoeffding [16]). Let X1, X2, . . . , Xk be
independent random variables with 0 ≤ Xj ≤ 1 for all i =

1, . . . , k. Define X̄ = 1
k

∑k
i=1Xj. Let µ = E[X̄]. Then for

ε ∈ (0, 1− µ), we have

Pr
{
|X̄ − µ| ≥ ε

}
≤ 2 exp(−2kε2).

Note that the requirement that ε < 1−µ is for convenience.
If ε > 1 − µ, then the implication is that |X̄| ≥ 1, which
violates the assumption of the theorem. In other words, if ε
is too large, then the probability is zero. We use this more
convenient corollary in the proofs of our theorems.

Corollary 2. For positive ε, δ, set k = d0.5ε−2 ln(2/δ)e.
Let X1, X2, . . . , Xk be independent random variables with
0 ≤ Xj ≤ 1 for all i = 1, . . . , k. Define X̄ = 1

k

∑k
i=1Xj.

Let µ = E[X̄]. Then,

Pr
{
|X̄ − µ| ≥ ε

}
≤ δ.

Proof. Let 2 exp(−2ε2k) = δ, solve for k, and apply
Thm. 1.

3. COUNTING TRIANGLES
We first consider the problem of counting all triangles in

an undirected graph. This is closely related to estimating
the clustering coefficient.

Our goal is to estimate t, the total number of triangles, in
an undirected graph G = (V,E). Let n = |V | and m = |E|.
Without loss of generality, assume the vertices are indexed
by i = 1, . . . , n. Let di denote the degree of vertex i. The
number of wedges centered at node i is given by

pi =

(
di
2

)
=
di(di − 1)

2
.

Note that
(
1
2

)
=
(
0
2

)
= 0. Let W denote the set of all wedges

in G. The total number of wedges is p = |W | =
∑
i pi.

We derive a result on the accuracy of estimating the clus-
tering coefficient.

Theorem 3 (Clustering Coefficient). For ε, δ > 0,
set k = d0.5 ε−2 ln(2/δ)e. For j = 1, . . . , k, choose wedge wj
uniformly at random (with replacement) from W and let Xj
be defined as

Xj =

{
1, if wj is closed,

0, otherwise.

Define X̄ = 1
k

∑k
i=1Xj. Then

Pr
{
|X̄ − c| ≥ ε

}
≤ δ,

where c is the clustering coefficient defined in (1).

Proof. Recall that c is the proportion of wedges that are
closed. Thus, it is straightforward to observe that c = E[X̄].
The proof the follows directly from Cor. 2.

Corollary 4 (Counting Triangles). Let the condi-
tions of Thm. 3 hold. Define t̂ = X̄p/3 and ε̂ = εp/3. Then

Pr
{
|t̂− t| ≥ ε̂

}
≤ δ.

Proof. Since t = cp/3 per (1), this corollary follows im-
mediately from Thm. 3.

Observe that the number of samples, k, does not depend
on the size of the graph. We say that ε is the error and
1− δ is the confidence. Fig. 3 shows the number of samples
needed for different error rates. We show three different
curves for difference confidence levels. Increasing the confi-
dence has minimal impact on the number of samples. The
number of samples if fairly low for error rates of 0.1 or 0.01,



but it increases with the inverse square of the desired error.
Nonetheless, the three million samples required for an error
rate of ε = .001 at 99.9% confidence requires only a few
seconds of calculations on most serial machines.
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Figure 3: The number of samples needed for different error
rates and different levels of confidence. A few data points
at 99.9% confidence are highlighted.

We design an algorithm for estimating the clustering co-
efficient and number of triangles and analyze its complexity.
The basic premise is to select a number of wedges uniformly
at random and check whether or not each is closed. There
are numerous ways that this can be implemented. For in-
stance, we can select vertex i with probability equal to pi/p
and then select two of its neighbors uniformly at random
without replacement. In this case, the overall probability of
selecting a particular wedge is pi/p× 1/

(
di
2

)
= 1/p. The im-

plementation we describe in Alg. 1 directly chooses a wedge
at random. However, we do not explicitly enumerate all
wedges. Instead, we have an implicit mapping of each ran-
dom number to each particular wedge. To make this work
cleanly, each wedge is actually listed twice as u - v - w and
w - v - u , and we will pick a random number in {1, . . . , 2p}.

We consider the algorithm in some detail.
• Step 1 is actually the most expensive step, costing
O(m) to calculate the degrees of all vertices.
• Step 2 just computes the number of wedges per degree,

and p is the total number of wedges.
• Step 3 calculates the edges of the “wedge bins” corre-

sponding to each vertex. For vertex i, its bin size is 2pi
since each wedge appears twice. If vertex i has pi = 0,
then it will never be selected by the requirement that
zi+1 > r (strict inequality).
• Steps 8–15 are converting the random number r se-

lected in Step 7 into an actual wedge. Note that Step 8
can be performed using a binary search at a cost of
O(logn). The cost of Steps 14 and 15 are O(1), when
the standard adjacency list format is used to store the
graph.
• Step 16 requires checking the existence of an edge in

the graph. The cost of this is O(logm).
We may conclude that the total cost of the method is O(m)
for preprocessing the degree distributions and O(k logm) for
checking the closure of k wedges.

We compare this method to exact enumeration and the
Doulion method in §6.

Algorithm 1 Hoeffding Triangle Estimate

Given error ε and failure probability δ.

1: Calculate degree di for i = 1, . . . , n
2: Set pi = di(di − 1)/2 for i = 1, . . . , n, and p =

∑
i pi

3: Set z1 = 1 and zi+1 = 2
∑i
i′=1 pi′ + 1 for i = 1, . . . , n

4: k ← d0.5 ε−2 ln(2/δ)e
5: cnt← 0
6: for j = 1, . . . , k do
7: r ← Uniform[{1, . . . , 2p}]
8: Find i such that zi ≤ r < zi+1.
9: `′ ← b(r − zi)/(di − 1)c+ 1

10: `′′ ← (r − zi)− (di − 1)(`′ − 1) + 1
11: if `′′ ≥ `′ then
12: `′′ ← `′′ + 1
13: end if
14: i′ ← index of `′th neighbor of j
15: i′′ ← index of `′′th neighbor of j
16: if (i′, i′′) ∈ E then
17: cnt← cnt + 1
18: end if
19: end for
20: ĉ = cnt/k . Estimate for c
21: t̂ = p( 1

3
cnt)/k . Estimate for t

4. COUNTING TRIANGLES PER DEGREE
Here we consider the problem of counting a subset of tri-

angles in a graph, i.e., all those that contain a node of some
specified degree. Likewise, we consider the problem of esti-
mating the clustering coefficient for all wedges centered at
nodes of specified degree. In this case, the estimate cluster-
ing coefficient does not lead directly to an estimate for the
number of triangles. However, both use the same basic data.

The node-level clustering coefficient (first used in [28]) is

ci =
ti
pi

=
number of triangles incident to node i

number of wedges centered at node i
.

The degree-wise clustering coefficient, cd, is the average of
ci for nodes of degree d. Define Vd = { i ∈ V | di = d }. Let
nd = |Vd|. Then we can write cd as

cd =
1

nd

∑
i∈Vd

ci. (2)

Let Wd be the set of wedges centered at a node of degree
d. We partition Wd into four disjoint subsets as follows:

Wd,0 = { w ∈Wd | w open } ,
Wd,1 = { w ∈Wd | w closed and has 1 degree-d node } ,
Wd,2 = { w ∈Wd | w closed and has 2 degree-d nodes } ,
Wd,3 = { w ∈Wd | w closed and has 3 degree-d nodes } .

The total number of wedges centered at a degree d node is

pd = |Wd| = nd

(
d

2

)
.

Define pd,q = |Wd,q| for q = 0, 1, 2, 3. Clearly, pd =
∑
q pd,q.

It is easy to show that (2) can be rewritten as

cd =
pd,1 + pd,2 + pd,3

pd
.

We are also interested in the number of triangles having one



or more degree-d nodes, denoted by td. Observe that

td = pd,1 +
1

2
pd,2 +

1

3
pd,3, (3)

since for each triangle there is either one wedge in Wd,1, two
wedges in Wd,2 or three wedges in Wd,3.

Theorem 5 (Degree-wise Clustering Coefficient).
For ε, δ > 0, set k = d0.5 ε−2 ln(2/δ)e. For j = 1, . . . , k,
choose wedge wj uniformly at random (with replacement)
from Wd and let Xj be defined as

Xj =

{
1, if wj is closed,

0, otherwise.

Define X̄ = 1
k

∑k
i=1Xj. Then

Pr
{
|X̄ − cd| ≥ ε

}
≤ δ,

where cd is the degree-wise clustering coefficient from (2).

Proof. Observe that cd = E[X̄] since it is the probability
that a random wedge in Wd is closed. The proof follows
immediately from Cor. 2.

Algorithm 2 Hoeffding Degree-d Triangle Estimate

Given set of degrees D, error ε, and failure probability δ.

1: Calculate degree di for i = 1, . . . , n

2: Set pi =

{
di(di − 1)/2 if di ∈ D,
0 otherwise,

for i = 1, . . . , n.

3: Set pD =
∑
i pi.

4: Set z1 = 1 and zi+1 = 2
∑i
i′=1 pi′ + 1 for i = 1, . . . , n

5: k ← d0.5 ε−2 ln(2/δ)e
6: cnt1← 0, cnt2← 0, cnt3← 0
7: for j = 1, . . . , k do
8: r ← Uniform[{1, . . . , 2pd}]
9: Find i such that zi ≤ r < zi+1.

10: `′ ← b(r − zi)/(di − 1)c+ 1
11: `′′ ← (r − zi)− (di − 1)(`′ − 1) + 1
12: if `′′ ≥ `′ then
13: `′′ ← `′′ + 1
14: end if
15: i′ ← index of `′th neighbor of j
16: i′′ ← index of `′′th neighbor of j
17: if (i′, i′′) ∈ E then
18: if di′ ∈ D and di′′ ∈ D then
19: cnt3← cnt3 + 1
20: else if di′ ∈ D or di′′ ∈ D then
21: cnt2← cnt2 + 1
22: else
23: cnt1← cnt1 + 1
24: end if
25: end if
26: end for
27: ĉD = (cnt1 + cnt2 + cnt3)/k . Estimate for cD
28: t̂D = pD(cnt1 + 1

2
cnt2 + 1

3
cnt3)/k . Estimate for tD

Theorem 6 (Degree-wise Triangle Count). For
ε, δ > 0, set k = d0.5 ε−2 ln(2/δ)e. For j = 1, . . . , k, choose
wedge wj uniformly at random (with replacement) from Wd

and let Yj be defined as

Yj =


1, if w ∈Wd,1,
1
2
, if w ∈Wd,2,

1
3
, if w ∈Wd,3,

0, if w ∈Wd,0 (open) .

Let Ȳ = 1
k

∑k
j=1 Yj. Define t̂ = Ȳ · pd and ε̂ = εpd. Then

Pr
{
|t̂− td| ≥ ε̂

}
≤ δ,

where td is the number of triangles having one or more ver-
tices of degree d.

Proof. We claim E[Ȳ ] = E[Y ] = td/pd. Suppose that w
is selected from Wd uniformly at random. Observe that

E[Y ] = Pr {w ∈Wd,1}+
Pr {w ∈Wd,2}

2
+

Pr {w ∈Wd,3}
3

= 1 · pd,1
pd

+
1

2
· pd,2
pd

+
1

3
· pd,3
pd

= td/pd,

per (3). Hence, from Cor. 2 we have

Pr
{
|Ȳ − td/pd| ≥ ε

}
≤ δ,

and the theorem follows by multiplying the inequality by
pd.

The algorithm to compute the degree-wise clustering co-
efficient and triangle count is shown in Alg. 2 in essence. We
have generalized the idea here for any set of specified degrees
D ⊆ { 1, . . . , dmax }. If D = { 1, . . . , dmax }, it is easy to see
that this is equivalent to Alg. 1. There are three counts cor-
responding to the number of closed wedges with 1, 2, and 3
vertices with degrees in D, respectively. If only interested in
the clustering coefficient, then there is no need to split the
counts. In Step 3, we define pD to be the number of wedges
with a node of degree d ∈ D at their center. Similarly, we
define cD to be the average of all ci such that di ∈ D and
tD to be the number of triangles with at least one vertex i
such that di ∈ D.

5. COUNTING DIRECTED TRIANGLES
Counting triangles in directed graphs is considerably more

difficult because there are seven types of directed triangles
(up to isomorphism); see Fig. 4. Nonetheless, the same prin-
ciples apply.

Figure 4: All different directed triangles

For directed graphs, there are three types of edges: out-
ward, inward, and bidirectional. The number of outward,
inward, and bidirectional edges incident to vertex i is called



the out-degree, in-degree, and bi-degree, respectively. These
are denoted by d+i , d−i , and d∗i .

Given these three edges types, there are six different types
of wedges, labeled by lower case Roman numerals in Fig. 5.
For any wedge type γ ∈ Γ ≡ { i, ii, iii, iv, v, vi }, define

pi(γ) = no. of wedges of type γ centered at node i, and

p(γ) =

n∑
i=1

pi(γ) = number of wedges of type γ.

The formulas for calculating pi(γ) are given in Tab. 2.

(i) (iii)(ii)

(iv) (v) (vi)

Figure 5: All different directed wedges

γ i ii iii iv v vi

pi(γ)
(
d+i
2

)
d+i d

−
i

(
d−i
2

)
d∗i d

+
i d∗i d

−
i

(
d∗i
2

)
Table 2: Number of wedges per node for each wedge type

Finally, we come back to the seven different types of trian-
gles, labeled by lowercase letters in Fig. 4. For any triangle
type σ ∈ Σ ≡ { a, b, c, d, e, f, g }, define

t(σ) = number of triangles of type σ.

We let ω(γ, σ) be the number of wedges of type γ is a tri-
angle of type σ. These values are listed in Tab. 3. We also
define Γσ = { γ ∈ Γ | ω(γ, σ) > 0 }, i.e., the subset of wedges
participating in triangle type σ.

Wedge types (γ)

T
ri

a
n
g
le

ty
p

es
(σ

) ω i ii iii iv v vi
a 1 1 1
b 3
c 1 2
d 1 1 1
e 1 2
f 1 1 1
g 3

Table 3: Number of each wedge type per triangle type

We define W (γ) to be the set of wedges of type γ. We
partition it into eight subsets as follows. Let

W (γ, 0) = { w ∈W (γ) | w is open } ,
W (γ, σ) = { w ∈W (γ) | w closes to be of type σ } .

Then we can write the number of triangles of type σ as

t(σ) =
|W (γ, σ)|
ω(γ, σ)

for any γ ∈ Γσ.

Theorem 7 (Directed Triangle Count). Assume we
wish to count triangles of type σ. Choose γ ∈ Γσ. For ε, δ >
0, set k = d0.5 ε−2 ln(2/δ)e. For j = 1, . . . , k, choose wedge
wj uniformly at random (with replacement) from W (γ) and
let Xj be defined as

Xj =

{
1, if wj closes to form a triangle of type σ

0, otherwise.

Define X̄ = 1
k

∑k
j=1Xj. Define t̂ = X̄p(γ)/ω(γ, σ) and

ε̂ = εp(γ)/ω(γ, σ). Then

Pr
{
|t̂− t(σ)| ≥ ε̂

}
≤ δ.

The proof follows the same principals as the previous the-
orems and so is omitted.

We will not write down the full algorithm for all scenarios
because it is too complex to be easily represented in pseu-
docode. Instead, we focus on triangle type (d) and wedge
type (ii) as a representative. This algorithm is presented in
Alg. 3. In Step 1, we calculate just the in- and out- degrees,
but we omit the bi-degrees since they are not used explicitly
for finding this triangle type. Recall, however, that these
in- and out-degree counts exclude any bidirectional edges.
In general, we recommend choosing wedge type γ ∈ Γσ with
the lowest total wedge count so that the sampling will visit
a larger fraction of the set, but this specific choice is not
necessary from a theoretical point of view.

Algorithm 3 Hoeffding Type (d) Triangle Estimate

Given error ε and failure probability δ.

1: Calculate degree d+i and d−i for i = 1, . . . , n
2: Set pi = d+i d

−
i for i = 1, . . . , n, and p =

∑
i pi

3: Set z1 = 1 and zi+1 =
∑i
i′=1 pi′ + 1 for i = 1, . . . , n

4: k ← d0.5 ε−2 ln(2/δ)e
5: cnt← 0
6: for j = 1, . . . , k do
7: r ← Uniform[{1, . . . , p}]
8: Find i such that zi ≤ r < zi+1.
9: `′ ← b(r − zi)/d−i c+ 1

10: `′′ ← (r − zi)− d−i (`′ − 1) + 1
11: i′ ← index of `′th out-neighbor of j
12: i′′ ← index of `′′th in-neighbor of j
13: if (i′, i′′) ∈ E and (i′′, i′) ∈ E then
14: cnt← cnt + 1
15: end if
16: end for
17: t̂ = p · cnt/k . Estimate for t

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
We have implemented all our algorithms in C, and have

run our experiments on a computer equipped with a 2.3GHz
Intel core i7 processor with 4 cores and 256KB L2 cache
(per core), 8MB L3 cache, and an 8GB memory. We have
performed our experiments on 21 graphs chosen out of the
SNAP data set [30]. In all cases, edge weights and self-edges
are omitted. For the undirected tests, we ignore direction
on the edges. From this collection, we have chosen matrices
with higher number of triangles. The properties of these
matrices are presented in Tab. 4.



Estimate Error Time (sec)
Graph n m p t D10 D25 H D10 D25 H E D10 D25 H
amazon0302 262K 900K 9M 718K 713K 688K 709K 0.16 0.99 0.27 0.39 0.36 0.36 0.34
amazon0312 401K 2350K 69M 3686K 3721K 3875K 3735K 0.15 0.82 0.21 1.16 0.95 0.93 0.88
amazon0505 410K 2439K 73M 3951K 3976K 4313K 3916K 0.10 1.49 0.14 1.29 0.98 0.96 0.91
amazon0601 403K 2443K 72M 3987K 3985K 4063K 3997K 0.01 0.32 0.05 1.23 0.99 0.97 0.91
as-skitter 1696K 11095K 16022M 28770K 29899K 29094K 28818K 0.02 0.01 0.00 94.18 4.68 4.48 4.18
ca-AstroPh 19K 198K 13M 1351K 1338K 1547K 1345K 0.32 4.60 0.15 0.16 0.07 0.07 0.07
ca-CondMat 23K 93K 2M 173K 176K 125K 175K 0.40 7.37 0.32 0.04 0.04 0.03 0.04
ca-HepPh 12K 118K 15M 3358K 3093K 3281K 3333K 5.21 1.52 0.49 0.22 0.04 0.04 0.04
cit-HepPh 35K 421K 26M 1277K 1277K 1094K 1290K 0.00 2.09 0.16 0.33 0.16 0.16 0.15
cit-HepTh 28K 352K 37M 1479K 1439K 1563K 1449K 0.32 0.68 0.24 0.34 0.13 0.13 0.13

cit-Patents 3775K 16519K 336M 7515K 7290K 7594K 7370K 0.20 0.07 0.13 11.57 8.29 8.10 7.57
email-Enron 37K 184K 26M 727K 718K 656K 722K 0.11 0.83 0.06 0.19 0.06 0.06 0.07
roadNet-CA 1965K 2767K 6M 121K 136K 94K 116K 0.77 1.35 0.24 1.16 1.17 1.16 1.08

soc-Epinions1 76K 406K 74M 1624K 1547K 1578K 1656K 0.31 0.19 0.13 0.81 0.15 0.14 0.14
soc-Slashdot0811 77K 469K 69M 552K 532K 656K 564K 0.09 0.46 0.05 0.67 0.17 0.17 0.17
soc-Slashdot0902 82K 504K 75M 603K 548K 453K 598K 0.22 0.60 0.02 0.73 0.19 0.18 0.18

web-BerkStan 685K 6649K 27983M 64691K 61426K 65156K 69342K 0.04 0.00 0.05 46.94 2.73 2.55 2.40
web-Google 876K 4322K 727M 13392K 13311K 13219K 13990K 0.03 0.07 0.25 2.69 1.90 1.88 1.75

web-Stanford 282K 1993K 3944M 11329K 11002K 12547K 11559K 0.02 0.09 0.02 7.38 0.82 0.79 0.75
wiki-Talk 2394K 4660K 12594M 9204K 9384K 9500K 9189K 0.00 0.01 0.00 22.53 2.12 2.04 1.89
wiki-Vote 7K 101K 15M 608K 542K 563K 602K 1.37 0.95 0.13 0.18 0.04 0.03 0.04

Mean: 0.47 1.17 0.15

Table 4: Comparison of triangle counting schemes for undirected graphs. We compare Doulion (D10 and D25) and our
Hoeffding (H) approach along with an efficient method for full enumeration (E). The errors are reported as the percentage of
p/3 (the maximum number of possible triangles).

Below, we compare algorithms with the forward (enumer-
ation) algorithm [9, 22, 10, 25] and Doulion approach [27].
For the forward algorithm, we have ordered vertices accord-
ing to their degrees and used the vertex numbering as a
tie-breaker. For the Doulion approach, we have used the
forward algorithm after down-selecting the edges.

6.2 Counting Triangles
In Tab. 4, we summarize experiments on 21 graphs from

the SNAP collection [30]. Recall that n is the number of
vertices, m is the number of edges, and p is the number of
wedges, and t is the number of triangles. We compare the
following methods:
• Enumeration (E) - Enumerates all triangles, being

clever to look at only one wedge per triangle rather
than three [9, 22, 10, 25].
• Doulion (D) - Estimates the number of triangles by

working with a reduced graph; Edges are selected from
the original graph with probability ρ [27]. We use ρ =
1/25 (labeled D25) and ρ = 1/10 (labeled D10).
• Hoeffding (H) - This is our proposed approach. Here

we have used k = 26, 500 samples, corresponding to an
error of ε = 0.01 at 99% confidence. This means we
expect the difference between our estimate and the real
answer to be no more than 1% of p/3.

Note that the enumeration approach gives the true num-
ber of triangles (t). We show the estimate t̂, computed by
each approximation method, as well as the error, which is
shown as a percentage of 1/3 of the total number of wedges
(the maximum number of possible triangles if every wedge
were closed), i.e.,

error = 100|t− t̂|/(p/3).

For Hoeffding, we expect

error = 100|t− t̂|/(p/3) ≤ 100ε = 1,

with 99% confidence. Indeed, the maximum error is 0.49,

well under the bound. As expected, D10 is generally bet-
ter than D25 (due to high variance, it is occasionally worse)
since it uses a larger sample of the graph. Hoeffding is gen-
erally as good or better than Doulion. On average, the error
of Doulion is much larger than that of Hoeffding. We could
use a higher value of ρ in Doulion and save more edges, but
then it would take more time.

The timing comparisons are also shown. It is worth not-
ing that 90-99% of the time for the Doulion and Hoeffding
methods is just reading the graph. Nevertheless, our objec-
tive is to show that the Hoeffding method is at least as fast as
the Doulion methods while achieving better accuracy. For
graphs with a large number of wedges (e.g., as-skitter),
the estimation methods are an order of magnitude faster
than direct enumeration.

The clustering coefficient is directly proportional to the
number of triangles, so we do not include it in Tab. 4.

Fig. 6 shows the convergence of the clustering coefficient
estimate as the number of samples increases. The dashed
line shows the error bars at 99.9% confidence. Indeed, it is
always possible to increase the number of samples, adding
to those already completed, in order to further reduce the
error bound. Given the number of samples computed and
the desired confidence, it is possible to determine the error
bars, as we show here. The level of confidence does not
change them much.

6.3 Counting Triangles per Degree
One of the unique benefits of our approach is the deriva-

tion of a method to count only triangles with a specified
degree as well as the clustering coefficient for a specified de-
gree. For instance, the BTER model of [23] can accurately
capture the degree-wise clustering coefficients, but these are
prohibitive to compute for large graphs because it requires
enumerating all triangles.

In Fig. 7, we compare true and predicated clustering co-
efficients by degree. We use just k = 6, 622 samples per
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Figure 7: True and estimated clustering coefficients, using our Hoeffding algorithm with ε = 0.02, δ = 0.01, and k = 6, 622
samples.
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Figure 6: Convergence of clustering coefficient estimate as
the number of samples increases for the amazon0505 graph.

degree, since that gives an absolute accuracy of ε = 0.02
with 99% confidence.

In Tab. 5, we compare are predictions of triangles by de-
gree with the actual counts computed by enumeration. We
show the predicated error range for the Hoeffding estimate,
and the actual difference (shown in the last column) is al-
ways well within the bound. A nice feature of our algorithm
is that it can be adapted to any set of triangle degrees, so
we show the set of triangles that have at least one degree
being in the set {3, 4, 5}.

6.4 Counting Directed Triangles
In Tab. 6, we show the results of our method for counting

directed triangles. We specify the number of directed edges,
which may be different than the undirected versions consid-
ered in Tab. 4. For the directed triangles, we consider only
the Type (d) triangle (see Fig. 4). We use k = 3, 800, 451
samples, corresponding to ε = 0.001 and δ = 0.001 (99.9%
confidence). We have only tested this for relatively small tri-
angles for which we can also do direct enumeration to com-
pare the results. Observe that the estimates are typically
an order of magnitude more accurate than the estimated
bounds (which are not unreasonable in the first place).

D True Hoeffding Diff

ca-CondMat

3 5947 6001± 174 54
4 9090 8996± 282 94
5 11492 11482± 378 10

3,4,5 24348 24528± 834 180

amazon0505

3 25108 25387± 977 279
4 44402 44406± 1853 4
5 64483 64481± 2837 2

3,4,5 125297 127658± 5668 2361

soc-Epinions1

3 4895 4895± 344 0
4 5247 5266± 430 19
5 6162 6078± 506 84

3,4,5 15177 15269± 1279 92

Table 5: Triangles by Degree, using ε = 0.02, δ = 0.01, and
k = 6, 622 samples.

Graph n m True Hoeffding Diff
amazon0302 262K 1235K 26992 27125± 948 133
cit-HepTh 28K 353K 308 322± 7422 14
cit-HepPh 35K 422K 232 244± 6490 12

soc-Epinions1 76K 509K 84384 84035± 7954 349
soc-Slashdot0811 77K 828K 9972 10040± 830 68
soc-Slashdot0902 82K 870K 10271 10330± 979 59

wiki-Vote 7K 104K 17667 17841± 3248 174

Table 6: Count of directed triangles of type (d).

7. CONCLUSIONS
We have developed a novel approach to very fast estima-

tion of the number of triangles in a graph. The approach
is premised on sampling wedges and using Hoeffding’s in-
equality (Thm. 1) to bound the estimation error. The bulk
of the work for our Hoeffding method is the preprocessing
to determine the degree (or in-, out-, and bi-degree for di-
rected graphs) of each vertex. From these values, we can
directly calculate the total number of wedges (or each di-
rected wedge) and from that compute exact error bounds
for estimating the number of triangles.

In our experimental results, we showed that our Hoeffd-
ing estimation approach is more accurate than Doulion’s
method and at least as fast in terms of computation time.
We have also showed that it is extremely accurate in terms



of counting the number of triangles of specified degree or for
calculating degree-wise clustering coefficients. To the best
of our knowledge, ours is the first estimation method for
calculating counts of directed triangles, and it is extremely
accurate in our experiments.

A major advantage of our Hoeffding method is that it
can be easily implemented in a distributed framework. In
a Hadoop MapReduce framework, for example, we may as-
sume that every node knows its neighbors (this can be done
but is a little more complicated when the neighbor list is
too big to fit in a single mapper) and so can randomly select
some wedges to check for closure. If the list of wedges to
check is small (which will generally be the case), the dis-
tributed cache can be employed and mappers can check for
wedge closure. One can also consider checking for closure
in the reducers, but it causes considerably more message
traffic.
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